Understanding Interstate Trade Patterns

Hakan Yilmazkuday

Journal of International Economics

2012; JIE

Volume 86, Issue 1, 58–166.
Highlights

- Interstate trade patterns are investigated within the U.S.

- The following elasticities are all identified:
 - Elasticity of substitution across goods
 - Elasticity of substitution across varieties of each good
 - Elasticity of distance for each good.

- Elasticity of substitution estimates are lower.

- Elasticity of distance estimates are higher.

- Home-bias effects are decreasing over time.
Bilateral Interstate Trade at the Good Level

- Under CES, the bilateral trade value from state i to state r for good j is obtained as:

$$\log \left(X_{r,i}^j \right) = \log \left(\left(P_{i,i}^j \right)^{1-\eta^j} \right) + \log \left(P_r^j \right)^{\eta^j} C_r^j \right)$$

- η^j is the elasticity of substitution across varieties of good j
- δ^j is the elasticity of distance
- η^j versus δ^j are identified using both trade and production-side data.
- Commodity Flow Survey data (2007; 2-digit) are used for trade.
- Gross markup data (from Census Bureau) are used for estimating η^j's.
- The average η^j (across industries) is estimated as 3.01.
- The average δ^j (across industries) is estimated as 0.45.
Aggregate Interstate Trade at the Good Level

- Under CES, the good-level import value of state r for good j is obtained as:

$$\log (M^j_r) = \left(1 - \epsilon \right) \times \log (P^j_r) + \log \left(\left(P_r^j \right)^\epsilon C_r \right) + \log \gamma^j_r$$

- ϵ is the elasticity of substitution across goods
- P^j_r is constructed using estimated variables/parameters according to:

$$P^j_r \equiv \left(\sum_i \theta^j_{r,i} \left(P^j_{i,i} \left(D^j_{r,i} \right)^{\delta^j} \right)^{1-\eta^j} \right)^{\frac{1}{1-\eta^j}}$$

- ϵ is estimated as 1.09.