WHY can we evaluate integrals using antiderivatives?

Remember that the variable of integration is a 'dummy variable' that goes away after you perform the integration. For instance, $\int_{2}^{5} t^{2} d t$ is just a number, not a function of t.

It's meaningful to define the area function

$$
A(x)=\int_{c}^{x} f(t) d t
$$

where c is a constant and we let x vary. This is a function of x, which can be loosely described as 'the net area under the graph of f up to x.'

It's then also meaningful to ask about the derivative of the area function. What is it?

$$
A^{\prime}(x)=\lim _{h \rightarrow 0} \frac{A(x+h)-A(x)}{h}=\cdots=\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f(t) d t=\cdots
$$

It turns out that $A^{\prime}(x)$ is just $f(x)$! In other words, $A(x)$ is an antiderivative of $f(x)$.

Now, what if we happen to just 'know' a function $F(x)$ that's an explicit antiderivative of $f(x)$? Any two antiderivatives of the same function must differ by a constant, so we have

$$
\int_{c}^{x} f(t) d t=F(x)+K \quad \text { for some constant } K
$$

We then have

$$
\begin{gathered}
\int_{c}^{b} f(t) d t=F(b)+K \\
\int_{c}^{a} f(t) d t=F(a)+K \\
\text { so } \int_{a}^{b} f(t) d t=\int_{c}^{b} f(t) d t-\int_{c}^{a} f(t) d t=(F(b)+K)-(F(a)+K)=F(b)-F(a) .
\end{gathered}
$$

Fundamental Theorem of Calculus, Part 1

If $A(x)=\int_{c}^{x} f(t) d t$, then $A^{\prime}(x)=f(x)$.

Fundamental Theorem of Calculus, Part 2

If $F(x)$ is any antiderivative of $f(x)$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

We sometimes abbreviate $F(b)-F(a)$ as $\left.F(x)\right|_{a} ^{b}$ or $[F(x)]_{a}^{b}$.
That notation obeys the following properties:

$$
\begin{aligned}
{[F(x)+G(x)]) a^{b} } & =[F(x)]_{a}^{b}+[G(x)]_{a}^{b} \\
{[c F(x)]_{a}^{b} } & =c[F(x)]_{a}^{b} \\
{[-F(x)]_{a}^{b} } & =[F(x)]_{b}^{a}
\end{aligned}
$$

There can be more than one correct way to do arithmetic, but these shortcuts can help you!

EXAMPLE 1: Evaluate the definite integral.

$$
\int_{-1}^{2}\left(x^{2}-x-2\right) d x
$$

More shortcuts: even and odd functions

In precalculus, you learn about 'even' and 'odd' functions.

If $f(-x)=f(x)$ for all x, then f is called 'even'.

If $f(-x)=-f(x)$ for all x, then f is called 'odd'.

What do these conditions say about the graph of f ?

EXAMPLE 2: Consider the following definite integral.

$$
\int_{-2}^{2}\left(x^{3}+x^{2}\right) d x
$$

(i) Using the Fundamental Theorem of Calculus, what's the answer?
(ii) Are there any shortcuts?

Average value of a function

What's the average value of something that changes continuously?

The average value of the function $f(x)$ on the interval $[a, b]$ is

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

(Integrate, then divide by the width of the interval)

Fact (Mean Value Theorem for integrals)

If f is a continuous function on an interval $[a, b]$, then f must attain its average value at least once. That is, we must have

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x=f(c)
$$

for some c in the interval (a, b).
(The Mean Value Theorem is important when proving things.)

Substitution

Many times, we don't know an antiderivative by just 'looking'. For example,

$$
\int 3 x^{2}\left(x^{3}+11\right)^{5} d x=?
$$

The method of substitution is like the chain rule in reverse.
FACT: $\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$.
Therefore $\int f^{\prime}(g(x)) \cdot g^{\prime}(x) d x=f(g(x))+C$.

This is 100% true, but messy to use if written this way.

There is other notation we use which is easier to work with.

Namely, use u as shorthand for $g(x)$, and use $d u$ as shorthand for $g^{\prime}(x) d x$.

ROUGH GUIDELINE: Choose u to be an 'inside' function, and hope $d u$ also appears.

EXAMPLE 3: Evaluate the indefinite integral.

$$
\int \sin ^{4} x \cos x d x
$$

Substitution in a definite integral

General fact:

$$
\int_{x=a}^{x=b} f^{\prime}(g(x)) \cdot g^{\prime}(x) d x=f(g(b))-f(g(a))=[f(u)]_{u=g(a)}^{u=g(b)}
$$

This is true, but we want a procedure that we can follow when evaluating definite integrals by substitution.

EXAMPLE 4: Evaluate the definite integral.

$$
\int_{1}^{4} \frac{1}{(3 x+1)^{2}} d x
$$

Note: When evaluating a definite integral, the final answer is just a number. So, if we do substitution, we don't need to go back to the old variable!

Defining the natural log as an integral

How do we define natural logs and the number e ?

Either we define e first, or we define natural logs first.

If we define e first, we have to decide on a precise definition for e, and we also have to define e^{x} for irrational numbers.

An attractive alternative is to define natural logs first, using integrals.

We officially define $\ln x$ to be $\int_{1}^{x} \frac{1}{t} d t$.

Then the fact that $\frac{d}{d x}(\ln x)=\frac{1}{x}$ follows from (part 1 of) the Fundamental Theorem of Calculus.

Then $\ln (x y)=\int_{1}^{x y} \frac{1}{t} d t$. It's possible to prove that this is equal to $\ln x+\ln y$ with the help of substitution.

For us, definitions are less important than the properties of logarithms.

$$
\begin{aligned}
\ln (x y) & =\ln x+\ln y \\
\ln \left(\frac{x}{y}\right) & =\ln x-\ln y \\
\ln \left(x^{r}\right) & =r \ln x \\
\frac{d}{d x}(\ln |x|) & =\frac{1}{x}
\end{aligned}
$$

We can then officially define exponential functions with other bases.

If b is any positive number, then

$$
b^{x}=\left(e^{\ln b}\right)^{x}=e^{x \ln b}
$$

As a consequence, we have

$$
\frac{d}{d x}\left(b^{x}\right)=b^{x} \ln b .
$$

Here's an integration problem where we can use substitution and logarithms.
EXAMPLE 5: Evaluate the integral.

$$
\int_{0}^{2} \frac{x}{x^{2}+1} d x
$$

