Volume by cylindrical shells

When we computed volumes of revolution using washers, we had rectangular slices of area that were perpendicular to the axis we were revolving around.

By contrast, if our rectangular slices of area are parallel to the axis we're revolving around, then revolving a rectangular slice generates a different shape, called a (cylindrical) shell.

For example, suppose the region bounded by two curves of the form $y=f(x)$ and $y=g(x)$ is revolved around the y-axis. Since x is the input variable, we have tall skinny rectangular slices with thickness $d x$. When one of those rectangular slices is revolved around the y-axis, we get a cylindrical shell.

All volumes of revolution can be computed in the following way:

$$
\text { Total volume }=\int(\text { volume of typical piece })=\int(\text { area of typical piece }) \cdot(\text { thickness })
$$

The formula for the area of a cylindrical shell is different from that for of a washer.

Fact: The formula for the side surface area of a cylinder is $2 \pi r h$, where r is the cylinder's radius and h is the cylinder's height.

General formula for volume by cylindrical shells:

$$
\text { Volume by shells }=\int 2 \pi r h \cdot \text { thickness }
$$

If the area between $y=f(x)$ and $y=g(x)$ (say $f \leq g$) is revolved around the y-axis, then
Volume by shells around y-axis $=\int 2 \pi x(g(x)-f(x)) d x$

EXAMPLE 1: Let A be the region bounded by $y=3 x-x^{2}$ and the x-axis. Find the volume obtained when the region A is revolved around the y-axis.

EXAMPLE 2: Let A be the region bounded by $x=2 y-y^{2}$ and $x=y$. Find the volume obtained when the region A is revolved around the x-axis.

When to use washers and when to use shells?

In a volume of revolution problem, you start with a two-dimensional region in the plane.

If that region's boundaries are of the form $y=f(x)$, then x is the input variable which changes by a small amount $d x$, and our 'area slices' are rectangles that are skinny in the x direction.

If that region's boundaries are of the form $x=f(y)$, then y is the input variable which changes by a small amount $d y$, and our 'area slices' are rectangles that are skinny in the y direction.

Next, the two-dimensional region is revolved around a line (which could be horizontal or vertical), called the 'axis of revolution'.

If our 'area slices' are PERPENDICULAR to the axis of revolution, we use WASHERS.

If our 'area slices' are PARALLEL to the axis of revolution, we use SHELLS.

Notice that there are actually four possibilities for a volume of revolution problem.

- $y=f(x)$, revolve around a horizontal line
- $y=f(x)$, revolve around a vertical line
- $x=f(y)$, revolve around a horizontal line
- $x=f(y)$, revolve around a vertical line

Summary of volume by washers and volume by shells

Volume by washers is

$$
\begin{aligned}
\int(\text { volume of washer }) & =\int(\text { area of washer }) \cdot(\text { thickness }) \\
& =\int\left(\pi R^{2}-\pi r^{2}\right) \cdot(\text { thickness })
\end{aligned}
$$

where R is the big radius and r is the small radius. More specifically,

$$
\begin{aligned}
R & =\text { distance from 'far curve' to axis of revolution } \\
r & =\text { distance from 'near curve' to axis of revolution }
\end{aligned}
$$

Volume by shells is

$$
\begin{aligned}
\int(\text { volume of shell }) & =\int(\text { area of shell }) \cdot(\text { thickness }) \\
& =\int 2 \pi r h \cdot(\text { thickness })
\end{aligned}
$$

where r is the radius of the shell and h is the height of the shell. More specifically,

$$
\begin{aligned}
& r=\text { distance from 'typical slice' to axis of revolution } \\
& h=\text { distance from 'big curve' to 'small curve' }
\end{aligned}
$$

EXAMPLE 3: Let A be the region bounded by $y=x^{2}, x=1$, and $y=0$. Find the volume obtained when the region A is revolved around the line $x=-2$.

Length of curves

The length of a curve can be approximated by a large number of short diagonal line segments.

The length of one of those short segments (the 'element' of arc length) is

$$
d s=\sqrt{(d x)^{2}+(d y)^{2}}
$$

The total length of a curve can be written as

$$
\begin{aligned}
\text { Total length } & =\int(\text { length of typical piece }) \\
& =\int d s \\
& =\int \sqrt{(d x)^{2}+(d y)^{2}} \\
& =\int \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
\end{aligned}
$$

If you want more explanation of that last step:

$$
\begin{aligned}
\sqrt{(d x)^{2}+(d y)^{2}} & =\sqrt{\left(\frac{(d x)^{2}}{(d x)^{2}}+\frac{(d y)^{2}}{(d x)^{2}}\right)(d x)^{2}} \\
& =\sqrt{\frac{(d x)^{2}}{(d x)^{2}}+\frac{(d y)^{2}}{(d x)^{2}}} \sqrt{(d x)^{2}} \\
& =\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
\end{aligned}
$$

You don't have to just memorize $\sqrt{1+(d y / d x)^{2}}$. There's a reason.

If we need to compute arc length when x is a function of y, the formula is

$$
\text { Total length }=\int \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y
$$

This is just another rearrangement of $\sqrt{(d x)^{2}+(d y)^{2}}$. We interchanged x and y.

EXAMPLE 4: Find the length of the portion of the curve

$$
y=\frac{x^{2}}{2}-\frac{\ln x}{4}
$$

between $x=1$ and $x=3$.

Surface area

When a curve of the form $y=f(x)$ is revolved around the x-axis, it generates a surface. The typical piece of surface area is a 'ribbon' (called the 'frustum' of a cone) whose area is $2 \pi r d s$, where r is the radius of the ribbon, and $d s$ is the same 'element of arc length' we saw before.

This means that in the situation described above, we have

$$
\begin{aligned}
\text { Total surface area } & =\int(\text { surface area of typical piece }) \\
& =\int 2 \pi r d s \\
& =\int 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
\end{aligned}
$$

EXAMPLE 5: The portion of the curve $y=x^{3}$ between $x=0$ and $x=1$ is revolved around the x-axis. Find the area of the surface generated.

Mass of a one-dimensional object

Suppose we have a one-dimensional object, such as a wire or rod, that has variable density, i.e., the density can be different at different points on the wire. For instance, x might stand for the position along the wire in centimeters, and ρ might stand for the density in grams per centimeter. If the density can depend on the position or location along the wire, then ρ is a function of x.

The total mass of the wire is given by

$$
\begin{aligned}
\text { Total mass } & =\int(\text { mass of typical small piece }) \\
& =\int(\text { density of small piece }) \cdot(\text { width of small piece }) \\
& =\int \rho(x) d x
\end{aligned}
$$

EXAMPLE 6: Find the total mass of a thin bar whose density at position x is given by $\rho(x)=x \sqrt{1-x^{2}}$ for $0 \leq x \leq 1$.

