Trigonometric substitution

Trig substitution is typically used for integrals containing

$$\sqrt{a^2 \pm x^2}$$
 or $\sqrt{x^2 \pm a^2}$

where a is a constant. For example:

$$\int \frac{1}{\sqrt{4+x^2}} \, dx = ??$$
$$\int \frac{x^2}{\sqrt{9-x^2}} \, dx = ??$$
$$\int \frac{1}{\sqrt{25x^2-4}} \, dx = ??$$

Guidelines for deciding on a trig substitution:

- If you see $\sqrt{a^2 x^2}$, try $x = a \sin \theta$. (Why? Because you get $1 \sin^2$, which is \cos^2 .)
- If you see $\sqrt{a^2 + x^2}$, try $x = a \tan \theta$. (Why? Because you get $1 + \tan^2$, which is sec².)
- If you see $\sqrt{x^2 a^2}$, try $x = a \sec \theta$. (Why? Because you get $\sec^2 -1$, which is \tan^2 .)

Note that you don't need to memorize these 'blindly'. Instead:

- remember the Pythagorean identities
- remember that you want a *perfect square under the square root*.

EXAMPLE 1: Evaluate the integral.

$$\int \frac{dx}{\sqrt{9-x^2}}$$

This means the same thing as $\int \frac{1}{\sqrt{9-x^2}} dx$.

EXAMPLE 2: Evaluate the integral.

$$\int \frac{dx}{\sqrt{4x^2 - 49}}$$

Strategy: Replace $4x^2$ with $49(\text{trig function})^2$.

But which trig function? (Remember the Pythagorean identities!)

Trig substitution with a **definite** integral

EXAMPLE 3: Evaluate the integral.

$$\int_0^2 \frac{x^3}{\sqrt{x^2+4}} \, dx$$

Partial fractions

Partial fractions is a technique of *algebra*. It's something you can do to rational functions *before* you integrate.

You know how to add fractions by converting to a common denominator:

2	3	27	$3 \ 5$	14 1	5 29
$\frac{-}{5}^{+}$	$\frac{1}{7} =$	$\frac{-}{5}, \frac{-}{7}$ +	$\frac{-}{7}\cdot\frac{-}{5} =$	$\frac{1}{35} + \frac{1}{3}$	$\frac{1}{5} = \frac{1}{35}$

You can do the same thing if the denominators contain x.

$$\frac{2}{x-4} + \frac{3}{x+1} = \frac{2(x+1)}{(x-4)(x+1)} + \frac{3(x-4)}{(x-4)(x+1)}$$
$$= \frac{2x+2}{(x-4)(x+1)} + \frac{3x-12}{(x-4)(x+1)}$$
$$= \frac{5x-10}{(x-4)(x+1)}$$

Partial fractions is the *reverse* process of this.

EXAMPLE 4: Evaluate the integral.

$$\int \frac{3x-2}{(x-3)(x+4)} \, dx$$

Strategy: Try to 'split' $\frac{3x-2}{(x-3)(x+4)}$ into $\frac{\text{something}}{x-3} + \frac{\text{something}}{x+4}$.

EXAMPLE 4: Evaluate the integral.

$$\int \frac{3x-2}{(x-3)(x+4)} \, dx$$

KEY STEP: Write down

$$\frac{3x-2}{(x-3)(x+4)} = \frac{A}{x-3} + \frac{B}{x+4}$$

and then do algebra to find A and B.

EXAMPLE 5: Evaluate the integral.

$$\int \frac{x^2 + 4x - 9}{x^3 - 6x^2 + 9x} \, dx$$

First step: How does the denominator factor?

EXAMPLE 6: Evaluate the integral.

$$\int \frac{5x^2 + x + 3}{x^3 + x} \, dx$$

First step: How does the denominator factor?

GUIDELINE:

If you have a repeated factor, you need different powers of that factor.

For example, if doing partial fractions on $\frac{6x+7}{(x+2)^2}$, then write:

$$\frac{6x+7}{(x+2)^2} = \frac{A}{x+2} + \frac{B}{(x+2)^2}$$

GUIDELINE:

If you have an irreducible quadratic factor, its numerator is linear. For example, if doing partial fractions on $\frac{5}{(x+1)(x^2+1)}$, then write:

$$\frac{5}{(x+1)(x^2+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+1}$$

Some integral facts:

$$\int \frac{1}{x} dx = \ln |x| + C$$

$$\int \frac{1}{x+2} dx = \ln |x+2| + C$$

$$\int \frac{1}{x-3} dx = \ln |x-3| + C$$
CAREFUL, though. Note that
$$\int \frac{1}{5x-7} dx = \frac{1}{5} \ln |5x-7| + C.$$

FACT:

$$\int \frac{1}{5x-7} \, dx = \frac{1}{5} \ln|5x-7| + C$$

Why the $\frac{1}{5}$ in front? Because when you take the derivative of $\ln |5x - 7|$, you MUST use the chain rule!

FACT: $\int \frac{1}{x^2 + 1} dx = \arctan x + C$ Notice that this has NOTHING to do with logarithms! We just 'know' this because we know $\frac{d}{dx} \arctan x = \frac{1}{x^2 + 1}$.

GENERAL RULE:

$$\int \frac{1}{u} \, du = \ln |u| + C$$

The du is a **very important part** of this rule!

The integral
$$\int \frac{1}{x^2+1} dx$$
 is NOT of the form $\int \frac{1}{u} du!$

However, the integral $\int \frac{2x}{x^2+1} dx$ is. (What's $\frac{d}{dx} \ln(x^2+1)$?)

EXAMPLE 7: Evaluate the integral.

$$\int_0^1 \frac{x^3}{x^2 + 2x + 1} \, dx$$

First step: Perform division to get a numerator with smaller degree.