Trigonometric substitution

Trig substitution is typically used for integrals containing

$$
\sqrt{a^{2} \pm x^{2}} \quad \text { or } \quad \sqrt{x^{2} \pm a^{2}}
$$

where a is a constant. For example:

$$
\begin{aligned}
\int \frac{1}{\sqrt{4+x^{2}}} d x & =? ? \\
\int \frac{x^{2}}{\sqrt{9-x^{2}}} d x & =? ? \\
\int \frac{1}{\sqrt{25 x^{2}-4}} d x & =? ?
\end{aligned}
$$

Guidelines for deciding on a trig substitution:

- If you see $\sqrt{a^{2}-x^{2}}$, try $x=a \sin \theta$. (Why? Because you get $1-\sin ^{2}$, which is $\cos ^{2}$.)
- If you see $\sqrt{a^{2}+x^{2}}$, $\operatorname{try} x=a \tan \theta$. (Why? Because you get $1+\tan ^{2}$, which is $\sec ^{2}$.)
- If you see $\sqrt{x^{2}-a^{2}}$, try $x=a \sec \theta$. (Why? Because you get $\sec ^{2}-1$, which is $\tan ^{2}$.)

Note that you don't need to memorize these 'blindly'. Instead:

- remember the Pythagorean identities
- remember that you want a perfect square under the square root.

EXAMPLE 1: Evaluate the integral.

$$
\int \frac{d x}{\sqrt{9-x^{2}}}
$$

This means the same thing as $\int \frac{1}{\sqrt{9-x^{2}}} d x$.

EXAMPLE 2: Evaluate the integral.

$$
\int \frac{d x}{\sqrt{4 x^{2}-49}}
$$

Strategy: Replace $4 x^{2}$ with $49(\text { trig function })^{2}$.

But which trig function? (Remember the Pythagorean identities!)

Trig substitution with a definite integral

EXAMPLE 3: Evaluate the integral.

$$
\int_{0}^{2} \frac{x^{3}}{\sqrt{x^{2}+4}} d x
$$

Partial fractions

Partial fractions is a technique of algebra. It's something you can do to rational functions before you integrate.

You know how to add fractions by converting to a common denominator:

$$
\frac{2}{5}+\frac{3}{7}=\frac{2}{5} \cdot \frac{7}{7}+\frac{3}{7} \cdot \frac{5}{5}=\frac{14}{35}+\frac{15}{35}=\frac{29}{35}
$$

You can do the same thing if the denominators contain x.

$$
\begin{aligned}
\frac{2}{x-4}+\frac{3}{x+1} & =\frac{2(x+1)}{(x-4)(x+1)}+\frac{3(x-4)}{(x-4)(x+1)} \\
& =\frac{2 x+2}{(x-4)(x+1)}+\frac{3 x-12}{(x-4)(x+1)} \\
& =\frac{5 x-10}{(x-4)(x+1)}
\end{aligned}
$$

Partial fractions is the reverse process of this.

EXAMPLE 4: Evaluate the integral.

$$
\int \frac{3 x-2}{(x-3)(x+4)} d x
$$

Strategy: Try to 'split' $\frac{3 x-2}{(x-3)(x+4)}$ into $\frac{\text { something }}{x-3}+\frac{\text { something }}{x+4}$.

EXAMPLE 4: Evaluate the integral.

$$
\int \frac{3 x-2}{(x-3)(x+4)} d x
$$

KEY STEP: Write down

$$
\frac{3 x-2}{(x-3)(x+4)}=\frac{A}{x-3}+\frac{B}{x+4}
$$

and then do algebra to find A and B.

EXAMPLE 5: Evaluate the integral.

$$
\int \frac{x^{2}+4 x-9}{x^{3}-6 x^{2}+9 x} d x
$$

First step: How does the denominator factor?

EXAMPLE 6: Evaluate the integral.

$$
\int \frac{5 x^{2}+x+3}{x^{3}+x} d x
$$

First step: How does the denominator factor?

GUIDELINE:

If you have a repeated factor, you need different powers of that factor.
For example, if doing partial fractions on $\frac{6 x+7}{(x+2)^{2}}$, then write:

$$
\frac{6 x+7}{(x+2)^{2}}=\frac{A}{x+2}+\frac{B}{(x+2)^{2}}
$$

GUIDELINE:

If you have an irreducible quadratic factor, its numerator is linear.
For example, if doing partial fractions on $\frac{5}{(x+1)\left(x^{2}+1\right)}$, then write:

$$
\frac{5}{(x+1)\left(x^{2}+1\right)}=\frac{A}{x+1}+\frac{B x+C}{x^{2}+1}
$$

Some integral facts:

$$
\begin{gathered}
\int \frac{1}{x} d x=\ln |x|+C \\
\int \frac{1}{x+2} d x=\ln |x+2|+C \\
\int \frac{1}{x-3} d x=\ln |x-3|+C
\end{gathered}
$$

CAREFUL, though. Note that $\int \frac{1}{5 x-7} d x=\frac{1}{5} \ln |5 x-7|+C$.

FACT:

$$
\int \frac{1}{5 x-7} d x=\frac{1}{5} \ln |5 x-7|+C
$$

Why the $\frac{1}{5}$ in front? Because when you take the derivative of $\ln |5 x-7|$, you MUST use the chain rule!

FACT: $\int \frac{1}{x^{2}+1} d x=\arctan x+C$
Notice that this has NOTHING to do with logarithms!
We just 'know' this because we know $\frac{d}{d x} \arctan x=\frac{1}{x^{2}+1}$.

GENERAL RULE:

$$
\int \frac{1}{u} d u=\ln |u|+C
$$

The $d u$ is a very important part of this rule!

The integral $\int \frac{1}{x^{2}+1} d x$ is NOT of the form $\int \frac{1}{u} d u$!

However, the integral $\int \frac{2 x}{x^{2}+1} d x$ is. (What's $\frac{d}{d x} \ln \left(x^{2}+1\right) ?$)

EXAMPLE 7: Evaluate the integral.

$$
\int_{0}^{1} \frac{x^{3}}{x^{2}+2 x+1} d x
$$

First step: Perform division to get a numerator with smaller degree.

