Numerical integration

How can we evaluate a definite integral, such as the following?

$$
\int_{2}^{5} x^{2} d x
$$

Since we happen to know an antiderivative of $f(x)=x^{2}$, we can do:

$$
\left[\frac{x^{3}}{3}\right]_{2}^{5}=\frac{1}{3}\left(5^{3}-2^{3}\right)=\frac{1}{3}(125-8)=\frac{117}{3}=39
$$

But there are many times when antiderivatives are difficult or impossible.

When first studying integrals, we learn that we can informally regard

$$
\int_{2}^{5} x^{2} d x
$$

as the sum of $x^{2} \cdot d x$ as x takes on 'every' value from 2 to 5 , and $d x$ is a tiny increase in x.

We can approximate an integral by dividing our interval $[a, b]$ into n equal subintervals, each of width $\Delta x=(b-a) / n$. For example, if we divide the interval [2,5] into $n=300$ subintervals, then we have $\Delta x=(5-2) / 300=0.01$. This gives us a total of 301 'grid points'

$$
x_{0}, x_{1}, x_{2}, \ldots, x_{299}, x_{300}
$$

If we use the left endpoint of each subinterval then we use the 300 points $x_{0}, x_{1}, \ldots, x_{299}$. If we use the right endpoint of each subinterval then we use the 300 points $x_{1}, x_{2}, \ldots, x_{300}$.

Using $n=300$, the left-endpoint approximation of $\int_{2}^{5} x^{2} d x$ is

$$
2^{2} \cdot 0.01+(2.01)^{2} \cdot 0.01+(2.02)^{2} \cdot 0.01+\cdots+(4.98)^{2} \cdot 0.01+(4.99)^{2} \cdot 0.01
$$

and the right-endpoint approximation is

$$
(2.01)^{2} \cdot 0.01+(2.02)^{2} \cdot 0.01+(2.03)^{2} \cdot 0.01+\cdots+(4.99)^{2} \cdot 0.01+5^{2} \cdot 0.01
$$

For a general function f, the left-endpoint approximation is

$$
\Delta x \cdot\left(f\left(x_{0}\right)+f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n-2}\right)+f\left(x_{n-1}\right)\right)
$$

and the right-endpoint approximation is

$$
\Delta x \cdot\left(f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+\cdots+f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
$$

The average of those two approximations is

$$
\frac{\Delta x}{2} \cdot\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
$$

This is the trapezoid rule.

Things to notice:

- the 2 in the denominator beneath the Δx
- the $1,2,2, \ldots, 2,1$ pattern of coefficients in front of the f 's

Another formula for numerical integration is Simpson's rule.

$$
\frac{\Delta x}{3} \cdot\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\cdots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
$$

Things to notice:

- the 3 in the denominator beneath the Δx
- the $1,4,2,4,2, \ldots, 2,4,1$ pattern of coefficients in front of the f 's

Here, n must be even. The pattern is $1,4,1$ or $1,4,2,4,1$ or $1,4,2,4,2,4,1$, etc.

For example: Trapezoid rule with $n=6$ subintervals

$$
\frac{\Delta x}{2} \cdot\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+2 f\left(x_{3}\right)+2 f\left(x_{4}\right)+2 f\left(x_{5}\right)+f\left(x_{6}\right)\right)
$$

and Simpson's rule with $n=6$ subintervals

$$
\frac{\Delta x}{3} \cdot\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+2 f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right)
$$

These are approximations of $\int_{a}^{b} f(x) d x$. We could also increase n.

EXAMPLE 1: Use the Trapezoid rule and Simpson's rule to approximate

$$
\int_{0}^{\pi} \sin ^{4} x d x
$$

using $n=6$ subintervals.

Improper integrals

Integrals that involve infinity are called 'improper'.

Type I: One or both of the endpoints is infinite.

Type II: The function we're integrating becomes infinite.

For either type of integral, we must 'work around' the infinity using limits.

EXAMPLE 2: Evaluate the integral $\int_{0}^{\infty} \frac{1}{x^{2}+1} d x$.

Strategy: We must instead evaluate $\int_{0}^{M} \frac{1}{x^{2}+1} d x$ and then let $M \rightarrow \infty$.

EXAMPLE 3: Evaluate the integral.

$$
\int_{1}^{\infty} \frac{1}{x^{1.001}} d x
$$

EXAMPLE 4: Evaluate the integral.

$$
\int_{1}^{\infty} \frac{1}{x^{0.999}} d x
$$

EXAMPLE 5: Evaluate the integral.

$$
\int_{0}^{4} \frac{1}{\sqrt{4-x}} d x
$$

Note: Even though you don't see an infinity symbol, nevertheless this integral is improper because the function becomes infinite at $x=4$. (Division by zero)

We must 'work around' $x=4$. Integrate from 0 to M, then let $M \rightarrow 4$.

EXAMPLE 6: Evaluate the integral.

$$
\int_{0}^{4} \frac{1}{(4-x)^{3 / 2}} d x
$$

When evaluating an improper integral, the last step is evaluating a limit.

Sometimes the limit exists, and sometimes it does not exist.

So some improper integrals have a value, and some do not.

If an improper integral evaluates to a number, then we say the improper integral converges. If it does not, then we say the improper integral diverges.

