Sequences and series

A sequence is like an infinite list.

If the numbers in a sequence get as close as we like to a certain number, then we say the sequence converges. Otherwise, it diverges.

An example of a sequence:

$$
\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}
$$

The numbers in this sequence get closer and closer to 0 . (They get as close as we like.)

We say that this sequence converges to 0 .

This sequence can be denoted

$$
\left\{\frac{1}{n}\right\}_{n=1}^{\infty}
$$

This means: The sequence whose nth term is $\frac{1}{n}$, as n goes from 1 to ∞.

Another example of a sequence:

$$
\left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots\right\}
$$

We can denote this sequence by $\left\{\frac{n-1}{n}\right\}_{n=1}^{\infty}$ or by $\left\{\frac{n}{n+1}\right\}_{n=0}^{\infty}$
This sequence converges to 1 .

In general, we say the sequence $\left\{a_{n}\right\}$ converges to L if $\lim _{n \rightarrow \infty} a_{n}=L$.
For example, we have $\lim _{n \rightarrow \infty} \frac{1}{n}=0$ and $\lim _{n \rightarrow \infty} \frac{n-1}{n}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1$.

Two more examples:

The sequence $\{\sqrt{n}\}_{n=1}^{\infty}$ does not converge. Neither does $\left\{(-1)^{n}\right\}_{n=0}^{\infty}$.

Some limits are easy, some are hard, and some are in between.

You sometimes have to use knowledge of limits from Calc I.

EXAMPLE: The sequence

$$
\left\{\frac{\ln 2}{2}, \frac{\ln 3}{3}, \frac{\ln 4}{4}, \frac{\ln 5}{5}, \ldots\right\}=\left\{\frac{\ln n}{n}\right\}_{n=2}^{\infty}
$$

converges (to 0), because $\lim _{n \rightarrow \infty} \frac{\ln n}{n}=0$.

Some less obvious examples: The sequence

$$
\left\{n^{1 / n}\right\}_{n=1}^{\infty}=\left\{1,2^{1 / 2}, 3^{1 / 3}, 4^{1 / 4}, \ldots\right\}
$$

It turns out that $\lim _{n \rightarrow \infty} n^{1 / n}=1$. This sequence converges to 1 .

Another example: The sequence

$$
\left\{\left(1+\frac{1}{n}\right)^{n}\right\}_{n=1}^{\infty}=\left\{2,\left(1+\frac{1}{2}\right)^{2},\left(1+\frac{1}{3}\right)^{3},\left(1+\frac{1}{4}\right)^{4}, \ldots\right\}
$$

It turns out that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$. This sequence converges to e.

FACT: A bounded monotone sequence must converge.
'Bounded': There exist numbers M_{1} and M_{2} such that all members of the sequence are between M_{1} and M_{2}.
'Monotone': The sequence is always increasing or always decreasing.

The sequence $\{1,-1,1,-1,1,-1, \ldots\}$ is bounded but not monotone.
This sequence does not converge. (It does not have a single limit.)

The sequence $\{\sqrt{2}, \sqrt{3}, \sqrt{4}, \sqrt{5}, \ldots\}$ is monotone but not bounded.
This sequence does not converge. (Its terms get arbitrarily large and don't approach a point on the number line.)

The sequence $\{1,1 / 2,1 / 3,1 / 4,1 / 5, \ldots\}$ is monotone (decreasing) and bounded, so it must converge. (In fact, it converges to 0 .)

The sequence $\{0,1 / 2,2 / 3,3 / 4,4 / 5, \ldots\}$ is monotone (increasing) and bounded, so it must converge. (In fact, it converges to 1.)

The sequence $\{-1,1 / 2,-1 / 3,1 / 4,-1 / 5, \ldots\}$ is not monotone, but it is bounded, and it does happen to converge (to 0).

A series is very different from a sequence.

A sequence is an infinite list, whereas a series is an infinite sum.

SERIES ARE FAR MORE SUBTLE THAN SEQUENCES!!!

Just like when we started integrals, we use \sum to mean 'sum of'.
$\sum_{n=1}^{\infty} \frac{1}{n} \quad$ means $\quad 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\cdots$
$\sum_{n=1}^{\infty} \frac{1}{n^{2}} \quad$ means $\quad 1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\frac{1}{36}+\frac{1}{49}+\cdots$
$\sum_{n=1}^{\infty} \frac{1}{2^{n}} \quad$ means $\quad \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\cdots$

Note: 2^{n} is a lot bigger than n^{2}, so $\frac{1}{2^{n}}$ is a lot smaller than $\frac{1}{n^{2}}$.
Also, $\frac{1}{n^{2}}$ is smaller than $\frac{1}{n}$.
We could compare with the improper integrals $\int_{1}^{\infty} \frac{1}{x} d x$ and $\int_{1}^{\infty} \frac{1}{x^{2}} d x$.

The partial sums of a series are the sums 'so far'.
$S_{n}=$ the sum of the first n terms of the series.

So if the series is $\sum_{n=1}^{\infty} a_{n}$ then we have

$$
\begin{aligned}
& S_{1}=a_{1} \\
& S_{2}=a_{1}+a_{2} \\
& S_{3}=a_{1}+a_{2}+a_{3}
\end{aligned}
$$

and so on.

The specific series

$$
\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\cdots
$$

is called the harmonic series. What are its partial sums?

$$
\begin{aligned}
& S_{1}=1 \\
& S_{2}=1+\frac{1}{2}=1.5 \\
& S_{3}=1+\frac{1}{2}+\frac{1}{3}=1.5+0.333 \ldots=1.8333 \ldots
\end{aligned}
$$

TRICK for understanding the harmonic series:

$$
\begin{array}{r}
1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{9}+\frac{1}{10}+\cdots+\frac{1}{16}\right)+\cdots \\
\frac{1}{3}+\frac{1}{4} \quad \text { is a group of } 2 \text { terms } \\
\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8} \quad \text { is a group of } 4 \text { terms } \\
\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16} \quad \text { is a group of } 8 \text { terms }
\end{array}
$$

If we cleverly decide to group in that way, then each group adds up to more than $\frac{1}{2}$, and we never run out of groups!

There is no upper bound to the partial sums of the harmonic series.

THE HARMONIC SERIES DIVERGES!!!

THIS IS LITERALLY ONE OF THE MOST IMPORTANT FACTS IN THE ENTIRE COURSE!!!

The sequence $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ converges to zero. The numbers in that list get arbitrarily small.

However, the series $\sum_{n=1}^{\infty} \frac{1}{n}$ turns out to diverge. If we keep adding $\frac{1}{n}$, then the total gets arbitrarily large.

So it's possible to have a_{n} where the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to 0 but the series $\sum_{n=1}^{\infty} a_{n}$ diverges.

We could compare with the improper integrals $\int_{1}^{\infty} \frac{1}{x} d x$ and $\int_{1}^{\infty} \frac{1}{x^{2}} d x$.
It's true that $\lim _{x \rightarrow \infty} \frac{1}{x}=0$, and it's true that $\lim _{x \rightarrow \infty} \frac{1}{x^{2}}=0$.
But $\frac{1}{x}$ and $\frac{1}{x^{2}}$ are different functions approaching 0 at different rates.

One of those improper integrals converges, and one of them diverges. It's not enough to know that the function approaches 0 .

For some special series, we can find a formula for the partial sums.

Geometric series: Each term is the previous term times a constant.

$$
\begin{aligned}
& \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\cdots \\
& \frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}+\cdots \\
& 1+(-1)+1+(-1)+1+(-1)+\cdots
\end{aligned}
$$

General geometric series:

$$
a+a \cdot r+a \cdot r^{2}+a \cdot r^{3}+\cdots=\sum_{n=1}^{\infty} a \cdot r^{n-1}
$$

Partial sum $=$ sum of the first n terms:

$$
S_{n}=a+a \cdot r+a \cdot r^{2}+a \cdot r^{3}+\cdots+a \cdot r^{n-2}+a \cdot r^{n-1}
$$

TRICK: What happens if we multiply this by r ?

FACT: Suppose we have a geometric series

$$
a+a \cdot r+a \cdot r^{2}+a \cdot r^{3}+\cdots
$$

If $-1<r<1$, then the geometric series converges, and its sum is $\frac{a}{1-r}$.

