Sequences and series

A sequence is like an infinite list.

If the numbers in a sequence get as close as we like to a certain number, then we say the sequence **converges**. Otherwise, it **diverges**.

An example of a sequence:

$$\left\{1, \ \frac{1}{2}, \ \frac{1}{3}, \ \frac{1}{4}, \ \dots\right\}$$

The numbers in this sequence get closer and closer to 0. (They get as close as we like.)

We say that this **sequence** converges to 0.

This sequence can be denoted

$$\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$$

This means: The sequence whose *n*th term is $\frac{1}{n}$, as *n* goes from 1 to ∞ .

Another example of a sequence:

$$\left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots\right\}$$

We can denote this sequence by $\left\{\frac{n-1}{n}\right\}_{n=1}^{\infty}$ or by $\left\{\frac{n}{n+1}\right\}_{n=0}^{\infty}$

This **sequence** converges to 1.

In general, we say the sequence $\{a_n\}$ converges to L if $\lim_{n\to\infty} a_n = L$.

For example, we have $\lim_{n \to \infty} \frac{1}{n} = 0$ and $\lim_{n \to \infty} \frac{n-1}{n} = \lim_{n \to \infty} \frac{n}{n+1} = 1$.

Two more examples:

The sequence $\{\sqrt{n}\}_{n=1}^{\infty}$ does **not** converge. Neither does $\{(-1)^n\}_{n=0}^{\infty}$.

Some limits are easy, some are hard, and some are in between.

You sometimes have to use knowledge of limits from Calc I.

EXAMPLE: The sequence

$$\left\{\frac{\ln 2}{2}, \frac{\ln 3}{3}, \frac{\ln 4}{4}, \frac{\ln 5}{5}, \dots\right\} = \left\{\frac{\ln n}{n}\right\}_{n=2}^{\infty}$$

converges (to 0), because $\lim_{n \to \infty} \frac{\ln n}{n} = 0.$

Some less obvious examples: The sequence

$${n^{1/n}}_{n=1}^{\infty} = {1, 2^{1/2}, 3^{1/3}, 4^{1/4}, \ldots}$$

It turns out that $\lim_{n \to \infty} n^{1/n} = 1$. This sequence converges to 1.

Another example: The sequence

$$\left\{ \left(1+\frac{1}{n}\right)^n \right\}_{n=1}^{\infty} = \left\{2, \ \left(1+\frac{1}{2}\right)^2, \ \left(1+\frac{1}{3}\right)^3, \ \left(1+\frac{1}{4}\right)^4, \ \dots \right\}$$

It turns out that $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$. This sequence converges to e.

FACT: A **bounded monotone** sequence must converge.

'Bounded': There exist numbers M_1 and M_2 such that all members of the sequence are between M_1 and M_2 .

'Monotone': The sequence is always increasing or always decreasing.

The sequence $\{1, -1, 1, -1, 1, -1, \ldots\}$ is bounded but not monotone.

This sequence does not converge. (It does not have a single limit.)

The sequence $\{\sqrt{2}, \sqrt{3}, \sqrt{4}, \sqrt{5}, \ldots\}$ is monotone but not bounded.

This sequence does not converge. (Its terms get arbitrarily large and don't approach a point on the number line.)

The sequence $\{1, 1/2, 1/3, 1/4, 1/5, \ldots\}$ is monotone (decreasing) and bounded, so it must converge. (In fact, it converges to 0.)

The sequence $\{0, 1/2, 2/3, 3/4, 4/5, \ldots\}$ is monotone (increasing) and bounded, so it must converge. (In fact, it converges to 1.)

The sequence $\{-1, 1/2, -1/3, 1/4, -1/5, \ldots\}$ is not monotone, but it is bounded, and it does happen to converge (to 0).

A series is very different from a sequence.

A sequence is an infinite list, whereas a **series** is an infinite **sum**.

SERIES ARE FAR MORE SUBTLE THAN SEQUENCES!!!

Just like when we started integrals, we use \sum to mean 'sum of'.

$$\sum_{n=1}^{\infty} \frac{1}{n} \qquad \text{means} \qquad 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \cdots$$
$$\sum_{n=1}^{\infty} \frac{1}{n^2} \qquad \text{means} \qquad 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \frac{1}{36} + \frac{1}{49} + \cdots$$
$$\sum_{n=1}^{\infty} \frac{1}{2^n} \qquad \text{means} \qquad \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \cdots$$

Note: 2^n is a lot bigger than n^2 , so $\frac{1}{2^n}$ is a lot **smaller** than $\frac{1}{n^2}$.

Also, $\frac{1}{n^2}$ is smaller than $\frac{1}{n}$.

We could compare with the improper integrals $\int_1^\infty \frac{1}{x} dx$ and $\int_1^\infty \frac{1}{x^2} dx$.

The **partial sums** of a series are the sums 'so far'.

 S_n = the sum of the first *n* terms of the series.

So if the series is $\sum_{n=1}^\infty a_n$ then we have $S_1 = a_1$ $S_2 = a_1 + a_2$

and so on.

The specific series

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \cdots$$

 $S_3 = a_1 + a_2 + a_3$

is called the **harmonic series**. What are its partial sums?

$$S_1 = 1$$

 $S_2 = 1 + \frac{1}{2} = 1.5$
 $S_3 = 1 + \frac{1}{2} + \frac{1}{3} = 1.5 + 0.333 \dots = 1.8333 \dots$

TRICK for understanding the harmonic series:

$$1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \left(\frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{16}\right) + \dots$$
$$\frac{1}{3} + \frac{1}{4} \qquad \text{is a group of } 2 \text{ terms}$$
$$\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \qquad \text{is a group of } 4 \text{ terms}$$
$$\frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16} \qquad \text{is a group of } 8 \text{ terms}$$

If we cleverly decide to group in that way, then each group adds up to more than $\frac{1}{2}$, and we never run out of groups!

There is **no upper bound** to the partial sums of the harmonic series.

THE HARMONIC SERIES DIVERGES!!!

THIS IS LITERALLY ONE OF THE MOST IMPORTANT FACTS IN THE ENTIRE COURSE!!!

The sequence $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ converges to zero. The numbers in that list get arbitrarily small.

However, the series $\sum_{n=1}^{\infty} \frac{1}{n}$ turns out to diverge. If we keep adding $\frac{1}{n}$, then the total gets arbitrarily large.

So it's possible to have a_n where the sequence $\{a_n\}_{n=1}^{\infty}$ converges to 0 but the series $\sum_{n=1}^{\infty} a_n$ diverges.

We could compare with the improper integrals
$$\int_1^\infty \frac{1}{x} dx$$
 and $\int_1^\infty \frac{1}{x^2} dx$.

It's true that $\lim_{x\to\infty} \frac{1}{x} = 0$, and it's true that $\lim_{x\to\infty} \frac{1}{x^2} = 0$.

But $\frac{1}{x}$ and $\frac{1}{x^2}$ are **different functions** approaching 0 at different rates.

One of those improper integrals converges, and one of them diverges. It's **not enough** to know that the function approaches 0. For some special series, we can find a formula for the partial sums.

Geometric series: Each term is the previous term times a constant.

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \cdots$$
$$\frac{1}{4} + \frac{1}{12} + \frac{1}{36} + \frac{1}{108} + \frac{1}{324} + \cdots$$
$$1 + (-1) + 1 + (-1) + 1 + (-1) + \cdots$$

General geometric series:

$$a + a \cdot r + a \cdot r^2 + a \cdot r^3 + \dots = \sum_{n=1}^{\infty} a \cdot r^{n-1}$$

Partial sum = sum of the first n terms:

$$S_n = a + a \cdot r + a \cdot r^2 + a \cdot r^3 + \dots + a \cdot r^{n-2} + a \cdot r^{n-1}$$

TRICK: What happens if we multiply this by r?

FACT: Suppose we have a geometric series

$$a + a \cdot r + a \cdot r^2 + a \cdot r^3 + \cdots$$

If -1 < r < 1, then the geometric series converges, and its sum is $\frac{a}{1-r}$.