If a series $\sum a_n$ has positive terms then its partial sums are increasing.

The big question is: Do those partial sums increase without bound, or do they have a limit? In other words, is the total infinite or finite?

It depends on the details of what a_n is!

THE INTEGRAL TEST

Suppose f is a positive continuous decreasing function on $[N, \infty)$.

Then the infinite series $\sum_{n=N}^{\infty} f(n)$ will converge if and only if the improper integral $\int_{N}^{\infty} f(x) dx$ converges.

EXAMPLE 1:

 $f(x) = \frac{1}{x}$ is a positive continuous decreasing function on $[1, \infty)$.

So we can determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n}$ converges or diverges by checking whether the integral $\int_{1}^{\infty} \frac{1}{x} dx$ converges or diverges.

EXAMPLE 2:

 $f(x) = \frac{1}{x^2}$ is a positive continuous decreasing function on $[1, \infty)$.

So we can determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges or diverges by checking whether the integral $\int_{1}^{\infty} \frac{1}{x^2} dx$ converges or diverges.

EXAMPLE 3:

 $f(x) = \frac{1}{\sqrt{x}}$ is a positive continuous decreasing function on $[1, \infty)$.

So we can determine whether the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ converges or diverges by checking whether the integral $\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$ converges or diverges.

The functions
$$f(x) = \frac{1}{x}$$
, $f(x) = \frac{1}{x^2}$, $f(x) = \frac{1}{\sqrt{x}}$ are all different.

$$\int_1^{\infty} \frac{1}{x} dx = \left[\ln x\right]_1^{\infty}$$

$$\int_1^{\infty} \frac{1}{x^2} dx = \int_1^{\infty} x^{-2} dx = \left[\frac{x^{-1}}{-1}\right]_1^{\infty}$$

$$\int_1^{\infty} \frac{1}{\sqrt{x}} dx = \int_1^{\infty} x^{-1/2} dx = \left[\frac{x^{1/2}}{1/2}\right]_1^{\infty}$$

If p is constant, a series of the form $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is called a p-series.

The three examples on the previous page are all *p*-series, as well as

$$\sum_{n=1}^{\infty} \frac{1}{n^{1.02}} = 1 + \frac{1}{2^{1.02}} + \frac{1}{3^{1.02}} + \frac{1}{4^{1.02}} + \cdots$$
$$\sum_{n=1}^{\infty} \frac{1}{n^{0.97}} = 1 + \frac{1}{2^{0.97}} + \frac{1}{3^{0.97}} + \frac{1}{4^{0.97}} + \cdots$$

If we apply the integral test to *p*-series, we get the following rule.

- If p > 1, the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges.
- If $0 \le p \le 1$, the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges.

(Notice: If p gets bigger, then $\frac{1}{n^p}$ gets smaller.)

EXAMPLE 4: Does the series
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$
 converge or diverge?

Note: $x \ln x$ is a positive increasing function of x, so $\frac{1}{x \ln x}$ is a positive decreasing function of x, so we can use the integral test.

To determine whether the series converges or diverges, check whether the integral $\int_2^\infty \frac{1}{x \ln x} dx$ converges or diverges.

Comparison tests for series

First, the **direct** comparison test.

Say $\sum a_n$ and $\sum b_n$ are series with positive terms, and say $a_n \leq b_n$.

If $\sum b_n$ converges, that 'forces' the smaller series $\sum a_n$ to converge.

If $\sum a_n$ diverges, that 'forces' the larger series $\sum b_n$ to diverge.

(Smaller than finite is finite, larger than infinite is infinite)

EXAMPLE 5: Does the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + 3}$ converge or diverge?

Notice that $\frac{1}{n^2+3}$ is positive. Also notice

$$n^{2} + 3 > n^{2}$$

$$\frac{1}{n^{2} + 3} < \frac{1}{n^{2}}$$

$$\sum \frac{1}{n^{2} + 3} < \sum \frac{1}{n^{2}}$$

We know $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, because it's a *p*-series with p = 2 > 1.

By direct comparison, we conclude that $\sum_{n=1}^{\infty} \frac{1}{n^2 + 3}$ converges.

EXAMPLE 6: Does $\sum_{n=2}^{\infty} \frac{1}{n^2 - 3}$ converge or diverge?

Rough idea: If n is large, then $n^2 - 3$ is just 'slightly' less than n^2 , so $\frac{1}{n^2 - 3}$ is 'close' to $\frac{1}{n^2}$.

If $a_n = \frac{1}{n^2 - 3}$ and $b_n = \frac{1}{n^2}$, how do we formalize the idea that a_n and b_n are 'close' to each other when n is large?

The Limit Comparison Test

Suppose $\sum a_n$ and $\sum b_n$ are series with positive terms.

If $\lim_{n\to\infty} \frac{a_n}{b_n}$ is not 0 and not ∞ , then the two series $\sum a_n$ and $\sum b_n$ 'behave the same', i.e., either they both converge or both diverge.

EXAMPLE 7: Does the series $\sum_{n=2}^{\infty} \frac{n-1}{3n^2+1}$ converge or diverge?