If a series $\sum a_{n}$ has positive terms then its partial sums are increasing.

The big question is: Do those partial sums increase without bound, or do they have a limit? In other words, is the total infinite or finite?

It depends on the details of what a_{n} is!

THE INTEGRAL TEST

Suppose f is a positive continuous decreasing function on $[N, \infty)$.

Then the infinite series $\sum_{n=N}^{\infty} f(n)$ will converge if and only if the improper integral $\int_{N}^{\infty} f(x) d x$ converges.

EXAMPLE 1:

$f(x)=\frac{1}{x}$ is a positive continuous decreasing function on $[1, \infty)$.

So we can determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n}$ converges or diverges by checking whether the integral $\int_{1}^{\infty} \frac{1}{x} d x$ converges or diverges.

EXAMPLE 2:

$f(x)=\frac{1}{x^{2}}$ is a positive continuous decreasing function on $[1, \infty)$.

So we can determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges or diverges by checking whether the integral $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ converges or diverges.

EXAMPLE 3:

$f(x)=\frac{1}{\sqrt{x}}$ is a positive continuous decreasing function on $[1, \infty)$.

So we can determine whether the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ converges or diverges by checking whether the integral $\int_{1}^{\infty} \frac{1}{\sqrt{x}} d x$ converges or diverges.

The functions $f(x)=\frac{1}{x}, f(x)=\frac{1}{x^{2}}, f(x)=\frac{1}{\sqrt{x}}$ are all different.

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x} d x & =[\ln x]_{1}^{\infty} \\
\int_{1}^{\infty} \frac{1}{x^{2}} d x & =\int_{1}^{\infty} x^{-2} d x=\left[\frac{x^{-1}}{-1}\right]_{1}^{\infty} \\
\int_{1}^{\infty} \frac{1}{\sqrt{x}} d x & =\int_{1}^{\infty} x^{-1 / 2} d x=\left[\frac{x^{1 / 2}}{1 / 2}\right]_{1}^{\infty}
\end{aligned}
$$

If p is constant, a series of the form $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is called a p-series.
The three examples on the previous page are all p-series, as well as

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{n^{1.02}}=1+\frac{1}{2^{1.02}}+\frac{1}{3^{1.02}}+\frac{1}{4^{1.02}}+\cdots \\
& \sum_{n=1}^{\infty} \frac{1}{n^{0.97}}=1+\frac{1}{2^{0.97}}+\frac{1}{3^{0.97}}+\frac{1}{4^{0.97}}+\cdots
\end{aligned}
$$

If we apply the integral test to p-series, we get the following rule.

- If $p>1$, the series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges.
- If $0 \leq p \leq 1$, the series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ diverges.
(Notice: If p gets bigger, then $\frac{1}{n^{p}}$ gets smaller.)

EXAMPLE 4: Does the series $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ converge or diverge?
Note: $x \ln x$ is a positive increasing function of x, so $\frac{1}{x \ln x}$ is a positive decreasing function of x, so we can use the integral test.

To determine whether the series converges or diverges, check whether the integral $\int_{2}^{\infty} \frac{1}{x \ln x} d x$ converges or diverges.

Comparison tests for series

First, the direct comparison test.

Say $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms, and say $a_{n} \leq b_{n}$.

If $\sum b_{n}$ converges, that 'forces' the smaller series $\sum a_{n}$ to converge.
If $\sum a_{n}$ diverges, that 'forces' the larger series $\sum b_{n}$ to diverge.
(Smaller than finite is finite, larger than infinite is infinite)

EXAMPLE 5: Does the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+3}$ converge or diverge?
Notice that $\frac{1}{n^{2}+3}$ is positive. Also notice

$$
\begin{aligned}
n^{2}+3 & >n^{2} \\
\frac{1}{n^{2}+3} & <\frac{1}{n^{2}} \\
\sum \frac{1}{n^{2}+3} & <\sum \frac{1}{n^{2}}
\end{aligned}
$$

We know $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges, because it's a p-series with $p=2>1$.

By direct comparison, we conclude that $\sum_{n=1}^{\infty} \frac{1}{n^{2}+3}$ converges.

EXAMPLE 6: Does $\sum_{n=2}^{\infty} \frac{1}{n^{2}-3}$ converge or diverge?
Rough idea: If n is large, then $n^{2}-3$ is just 'slightly' less than n^{2}, so $\frac{1}{n^{2}-3}$ is 'close' to $\frac{1}{n^{2}}$.
If $a_{n}=\frac{1}{n^{2}-3}$ and $b_{n}=\frac{1}{n^{2}}$, how do we formalize the idea that a_{n} and b_{n} are 'close' to each other when n is large?

The Limit Comparison Test

Suppose $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms.
If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ is not 0 and not ∞, then the two series $\sum a_{n}$ and $\sum b_{n}$ 'behave the same', i.e., either they both converge or both diverge.

EXAMPLE 7: Does the series $\sum_{n=2}^{\infty} \frac{n-1}{3 n^{2}+1}$ converge or diverge?

