Alternating series and absolute convergence

Some series have a mixture of positive and negative terms.

For example:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots
$$

If $a_{n}=\frac{(-1)^{n-1}}{n}$, then $\sum a_{n}$ is a series with positive and negative terms.
More specifically, the terms of that series alternate between positive and negative.

Alternating series test: Suppose we have an alternating series $\sum(-1)^{n} a_{n}$ where a_{n} is positive. If a_{n} decreases to zero, then the alternating series converges.

Question: Does the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ converge or diverge?

Question: Does the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$ converge or diverge?

An infinite series $\sum a_{n}$ is called absolutely convergent if the related (but different) series $\sum\left|a_{n}\right|$ is convergent.

For example

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots
$$

To check whether the above series is absolutely convergent, we check whether the related series

$$
\sum_{n=1}^{\infty}\left|\frac{(-1)^{n-1}}{n}\right|=\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots
$$

is convergent or not.

Question: Is the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots
$$

absolutely convergent or not?

Another question: Is the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}=1-\frac{1}{4}+\frac{1}{9}-\frac{1}{16}+\cdots
$$

absolutely convergent or not?

FACT: If the series $\sum\left|a_{n}\right|$ converges, then the series $\sum a_{n}$ converges.

In other words, absolute convergence implies convergence.

Informally, absolutely convergent is like 'strongly convergent' or 'convergent in a way that's hard to destroy'.

The Ratio Test

Suppose $\sum a_{n}$ is an infinite series, and define

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|
$$

Then:

- If $R<1$, then the series $\sum a_{n}$ converges absolutely.
- If $R>1$, then the series $\sum a_{n}$ diverges.
(Unfortunately, if $R=1$, then you don't know what happens, and you have to try something else.)

Intuition behind the ratio test:

When you apply the ratio test, you're looking at the ratio of two consecutive terms of your series.

If that ratio approaches $\frac{1}{3}$ (for example) then the later terms of your series 'resemble' a geometric series with $r=\frac{1}{3}$.

