Power series

A power series is like a polynomial, but longer.

A power series centered at 0 looks like

$$
\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots
$$

A power series centered at a looks like

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots
$$

We can build power series step by step to approximate functions.

An expression of the form $c_{0}+c_{1}(x-a)$ can be a linear approximation of a particular function near $x=a$.

An expression of the form $c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}$ can be a quadratic approximation of a particular function near $x=a$.

Taylor polynomials

A Taylor polynomial is a sum of powers of $(x-a)$ where the coefficient of $(x-a)^{n}$ is $f^{(n)}(a) / n$!

That is, the coefficient corresponding to the nth power is the nth derivative divided by n factorial.

Why would we do this?

Suppose we want to build a polynomial or a power series that estimates $f(x)=e^{x}$. How might we go about it?

Geometric series as power series

Remember that the geometric series

$$
\sum_{n=0}^{\infty} a r^{n}=a+a r+a r^{2}+a r^{3}+\cdots
$$

converges to $\frac{a}{1-r}$ if $|r|<1$.

It follows that the power series

$$
\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots
$$

converges to $\frac{1}{1-x}$ if $|x|<1$.

Convergence of power series

A power series might converge for some values of x and diverge for others.

We might want to know which x values make a power series converge.

A power series centered at a will definitely converge if $x=a$.

There will be an interval of x values that make the series converge.

The number a will be at the center of that interval of convergence.

We can use the ratio test to find out which values of x make a power series converge.

New power series from old

If you have a power series, you might be able to obtain other power series by doing algebra, or by differentiating or integrating.

Can we find a power series for $\frac{\sin x}{x}$ or $e^{-x^{2}} ?$

Can we then find a power series for $\int \frac{\sin x}{x} d x$ or $\int e^{-x^{2}} d x$?

