WRITE YOUR NAME:

MAC 2313 B51 Spring 2024 Written homework #3 Due Tuesday January 30th, in Canvas

Question 1. Consider the vectors $\mathbf{u} = \langle 7, 0, 0 \rangle$ and $\mathbf{v} = \langle 2, 3, 0 \rangle$.

(i) Compute $\mathbf{u} \times \mathbf{v}$.

(ii) Draw a rough sketch of \mathbf{u} , \mathbf{v} , and $\mathbf{u} \times \mathbf{v}$ in \mathbb{R}^3 .

(iii) Draw a rough sketch of \mathbf{u} and \mathbf{v} in the *xy*-plane, and verify that $|\mathbf{u} \times \mathbf{v}|$ is equal to the area of the parallelogram spanned by \mathbf{u} and \mathbf{v} .

Question 2.

Find the distance from the point (7, 5, 3) to the plane 2x + 3y + 6z = 12.

Question 3. Do the lines

$$x = t,$$
 $y = 2t + 1,$ $z = 3t + 4$

and

$$x = 2s - 2,$$
 $y = 2s - 1,$ $z = 3s + 1$

intersect each other at only one point? If so, find a plane that contains both lines.

Question 4. Consider the curve in \mathbb{R}^3 defined by $\mathbf{r}(t) = \langle 10 \cos t, 2 \sin t, 1 \rangle$. (i) What kind of curve is it?

(ii) Find all points where the curve intersects the plane y = 1.