WRITE YOUR NAME:

MAC 2313 B51 Spring 2024
Written homework \#4
Due Tuesday February 6th, in Canvas

Question 1. The vector-valued function $\mathbf{r}(t)=\langle 8 \cos 2 t, 8 \sin 2 t\rangle$ defines a curve in \mathbb{R}^{2}.
(i) What shape is the curve? Why?
(ii) Calculate $\mathbf{r}^{\prime}(t)$, and verify explicitly that $\mathbf{r}^{\prime}(t)$ is orthogonal to $\mathbf{r}(t)$ for all t.

Question 2. Find the length of the curve defined by $\mathbf{r}(t)=\left\langle t, t, t^{3 / 2}\right\rangle$ for $0 \leq t \leq 1$.

Question 3. Consider the curve in \mathbb{R}^{2} defined by $\mathbf{r}(t)=\left\langle 3 t^{2}-1,4 t^{2}+5\right\rangle$.
(i). Explicitly find the arc length function $s(t)=\int_{0}^{t}\left|\mathbf{r}^{\prime}(u)\right| d u$.
(ii). Find the inverse of the function in (i), i.e. write t as a function of s.
(iii). Rewrite the curve using s as the parameter. What type of curve is it?

