WRITE YOUR NAME:

MAC 2313 B51 Spring 2024 Written homework #4

Due Tuesday February 6th, in Canvas

Question 1. The vector-valued function $\mathbf{r}(t) = \langle 8\cos 2t, 8\sin 2t \rangle$ defines a curve in \mathbb{R}^2 .

(i) What shape is the curve? Why?

(ii) Calculate $\mathbf{r}'(t)$, and verify explicitly that $\mathbf{r}'(t)$ is orthogonal to $\mathbf{r}(t)$ for all t.

Question 2. Find the length of the curve defined by $\mathbf{r}(t) = \langle t, t, t^{3/2} \rangle$ for $0 \le t \le 1$.

Question 3. Consider the curve in \mathbb{R}^2 defined by $\mathbf{r}(t) = \langle 3t^2 - 1, 4t^2 + 5 \rangle$.

- (i). Explicitly find the arc length function $s(t) = \int_0^t |\mathbf{r}'(u)| \, du$.
- (ii). Find the inverse of the function in (i), i.e. write t as a function of s.
- (iii). Rewrite the curve using s as the parameter. What type of curve is it?