WRITE YOUR NAME:

MAC 2313 Quiz 15 Tuesday March 19th

Evaluate the integral

$$\iint_{\mathcal{D}} (x+y) \, dA$$

where R is the region bounded by $y = x^2$ and $y = \sqrt{x}$. Type 1 region

One of these is top curve, one is bottom curve

Intersections? Algebraically: $\chi^2 = \sqrt{\chi} \Rightarrow (\chi^2)^2 = (\sqrt{\chi})^2$

But also we just "know" the functions.

Picture of R:

$$y=x^2$$
 is BOTTOM, $y=Jx$ is TOP

 $x=0$ $x=1$ (Could also use test input e.g. $x=\frac{1}{4}$)

 $x=0$ $y=\sqrt{x}$ $(x+y)$ dy $dx = \int_{x=0}^{x=1} \int_{x=0}^{x=1} xy + \frac{y^2}{2} \int_{y=x^2}^{y=\sqrt{x}} dx$

$$= \int_{x=0}^{x=1} \left(\left(x \cdot x'^{2} + \frac{x}{2} \right) - \left(x \cdot x^{2} + \frac{x^{4}}{2} \right) \right) dx$$

$$= \int_{x=0}^{x=1} \left(\chi^{3/2} + \frac{\chi}{2} - \chi^3 - \frac{\chi^4}{2} \right) d\chi$$

$$= \left[\frac{2}{5} \chi^{5/2} + \frac{\chi^2}{4} - \frac{\chi^4}{4} - \frac{\chi^5}{10} \right]_0^1 = \frac{2}{5} + \frac{1}{4} - \frac{1}{4} - \frac{1}{10}$$

$$=\frac{4}{10}-\frac{1}{10}=\frac{3}{10}$$