Vectors are often described as quantities with both magnitude and direction.
Some common examples are velocity, acceleration, and force.

Vectors might lie in two-dimensional space $\left(\mathbb{R}^{2}\right)$, three-dimensional space $\left(\mathbb{R}^{3}\right)$, or even in higher-dimensional space (but in this course we won't go beyond three dimensions).
We often visualize a vector as an arrow (although a vector can also represent a location). Mathematically, a vector in \mathbb{R}^{2} is just an ordered pair of real numbers, and a vector in \mathbb{R}^{3} is just an ordered triple of real numbers.

In our textbook (and many other typed materials), vectors are written in boldface, like \mathbf{v} or w. When writing by hand, we often use an underline, overline, or arrow.

The vector from point P to point Q is written $\overrightarrow{P Q}$ and can be calculated as $Q-P$. (It's the vector you need to add to P to get Q.)

QUESTION: If P is the point $(3,1)$ and Q is the point $(7,2)$, find the vector $\overrightarrow{P Q}$. Also draw a picture.

A 'scalar' just means a (single) real number. We can multiply a vector by a scalar and get a parallel vector. (We multiply each component by that scalar.)

QUESTION: If $\mathbf{v}=\langle 4,3\rangle$ and $c=2$, compute $c \mathbf{v}$. Also draw a picture.

There are various ways to visualize addition and subtraction of vectors (but mathematically, we just add or subtract corresponding components).

QUESTION: If $\mathbf{v}=\langle 5,1\rangle$ and $\mathbf{w}=\langle 2,4\rangle$, compute $\mathbf{v}+\mathbf{w}$. Also draw a picture.

Three-dimensional space is harder to draw than two-dimensional space. When working in \mathbb{R}^{3}, we can think of the $x y$-plane as the 'floor' and the z-axis as perpendicular to the floor, with positive z values above the floor and negative z values below.

The x-axis, y-axis, and z-axis obey the right-hand rule: if you curl the fingers of your right hand from the positive x-axis toward the positive y-axis, your thumb points along the positive z-axis.

How do we find the distance between two points in \mathbb{R}^{2} or \mathbb{R}^{3} ? For instance, what's the distance between $(8,2,6)$ and $(3,5,7)$ in \mathbb{R}^{3} ?

FACT: The distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in \mathbb{R}^{2} is given by

$$
\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

and the distance between two points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{3}\right)$ in \mathbb{R}^{3} is given by

$$
\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}
$$

FACT: The magnitude (or length) of a vector $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ in \mathbb{R}^{2} is given by

$$
|\mathbf{v}|=\sqrt{v_{1}^{2}+v_{2}^{2}}
$$

and the magnitude (or length) of a vector $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ in \mathbb{R}^{3} is given by

$$
|\mathbf{v}|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}
$$

The only vector whose magnitude is 0 is the zero vector, $\mathbf{0}$.

A vector whose magnitude is 1 is called a unit vector. Given any nonzero vector \mathbf{v}, we can get a unit vector in the same direction as \mathbf{v} by multiplying by the scalar $1 /|\mathbf{v}|$.

QUESTION: Find a unit vector in the same direction as $\mathbf{v}=\langle 3,-2,-6\rangle$.

Coordinate unit vectors $\mathbf{i}, \mathbf{j}, \mathrm{k}$

The 'coordinate unit vectors' or 'standard basis vectors' in \mathbb{R}^{2} are

$$
\begin{aligned}
& \mathbf{i}=\langle 1,0\rangle \\
& \mathbf{j}=\langle 0,1\rangle
\end{aligned}
$$

The 'coordinate unit vectors' or 'standard basis vectors' in \mathbb{R}^{3} are

$$
\begin{aligned}
\mathbf{i} & =\langle 1,0,0\rangle \\
\mathbf{j} & =\langle 0,1,0\rangle \\
\mathbf{k} & =\langle 0,0,1\rangle
\end{aligned}
$$

So for example, the vector $\langle 9,-2,6\rangle$ can also be written as $9 \mathbf{i}-2 \mathbf{j}+6 \mathbf{k}$.

Properties of vector operations

Vector addition and scalar multiplication obey some nice properties. For example:

$$
\begin{aligned}
\mathbf{u}+\mathbf{v} & =\mathbf{v}+\mathbf{u} \\
(\mathbf{u}+\mathbf{v})+\mathbf{w} & =\mathbf{u}+(\mathbf{v}+\mathbf{w}) \\
\mathbf{v}+\mathbf{0} & =\mathbf{v} \\
1 \mathbf{v} & =\mathbf{v} \\
c(\mathbf{u}+\mathbf{v}) & =c \mathbf{u}+c \mathbf{v} \\
(a+b) \mathbf{v} & =a \mathbf{v}+b \mathbf{v}
\end{aligned}
$$

None of these properties is surprising, but they still require proof.

Midpoint formula

The midpoint of the line segment joining the points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)
$$

Planes parallel to the coordinate planes

In \mathbb{R}^{3}, any equation of the form $x=c, y=c$, or $z=c$ (where c is a constant) will define a plane (a plane which is parallel to one of the coordinate planes and perpendicular to one of the coordinate axes).

QUESTION: In \mathbb{R}^{3}, which points satisfy $y=0$? Which points satisfy $y=5$? Which points satisfy $z=2$? Draw a picture for each of those three scenarios.

Spheres

What does the equation of a sphere look like in three dimensions? For example, how would we find the equation of the sphere whose center is $(7,1,2)$ and whose radius is 4 ?

That sphere is the set of all points (x, y, z) whose distance from $(7,1,2)$ is exactly 4 .

FACT: The sphere in \mathbb{R}^{3} whose center is the point (a, b, c) and whose radius is r has the equation

$$
(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2}
$$

(Note: When we say 'sphere', we mean the surface of the sphere, like a balloon or soap bubble, but not the air inside of it. If we want to include the interior of the sphere, we use the word 'ball'.)

Dot product

If $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ are two vectors in \mathbb{R}^{2}, then their dot product is

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2} .
$$

If $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ are two vectors in \mathbb{R}^{3}, then their dot product is

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3} .
$$

(In fact, dot product can be defined in a similar way in \mathbb{R}^{n} for any n.)

Notice that the dot product of two vectors is a scalar.

FACT: If \mathbf{v} is any vector, then $\mathbf{v} \cdot \mathbf{v}=|\mathbf{v}|^{2}$. That is, the dot product of a vector with itself is equal to the square of its length.

The dot product satisfies the following properties, which do not look surprising, but you still need to do a little work to verify that they are true.

$$
\begin{aligned}
& \mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u} \\
& c(\mathbf{u} \cdot \mathbf{v})=(c \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(c \mathbf{v}) \\
& \mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}
\end{aligned}
$$

One consequence of these, for example, is that $\mathbf{u} \cdot(\mathbf{v}-\mathbf{w})=\mathbf{u} \cdot \mathbf{v}-\mathbf{u} \cdot \mathbf{w}$.

FACT: If \mathbf{u} and \mathbf{v} are any two vectors, then $\mathbf{u} \cdot \mathbf{v}=0$ if and only if \mathbf{u} and \mathbf{v} are perpendicular.

EXAMPLE: Consider the vector $\mathbf{u}=\langle 4,3\rangle$ in \mathbb{R}^{2}. Which vectors are perpendicular to \mathbf{u} ?

EXAMPLE: Consider the vectors $\mathbf{u}=\langle 1,3,2\rangle$ and $\mathbf{v}=\langle 4,-2,1\rangle$ in \mathbb{R}^{3}. We can check that

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{v} & =\langle 1,3,2\rangle \cdot\langle 4,-2,1\rangle \\
& =1 \cdot 4+3 \cdot(-2)+2 \cdot 1 \\
& =4-6+2 \\
& =0
\end{aligned}
$$

so according to the top of this page, \mathbf{u} and \mathbf{v} are perpendicular. But how do we see that?

Let \mathbf{u} and \mathbf{v} be any two vectors in \mathbb{R}^{3}, and let θ be the angle between them. Create a triangle by also drawing the vector $\mathbf{u - v}$, and then consider what the Pythagorean theorem (and its converse) say about this triangle.

Dot products are closely related to projections.

If \mathbf{u} and \mathbf{v} are any two vectors, the projection of \mathbf{u} onto \mathbf{v}, denoted $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$, is like the 'shadow' that \mathbf{u} casts on \mathbf{v}.

The projection $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ is equal to $k \mathbf{v}$ for some scalar k. The scalar k is positive if the angle between \mathbf{u} and \mathbf{v} is acute, and is negative if the angle between \mathbf{u} and \mathbf{v} is obtuse.

What is k ? The key to figuring this out is that $\mathbf{u}-k \mathbf{v}$ is perpendicular to \mathbf{v}.

FACT: The projection of \mathbf{u} onto \mathbf{v} is given by

$$
\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}
$$

You could memorize this formula if you want, but rote memorization can be risky. Tips for making sense of the formula: Note that \mathbf{u} appears just once, in the numerator, and \mathbf{v} appears in a 'balanced' way.

The dot product is also related to the cosine of the angle between two vectors.

FACT: The dot product of any two vectors \mathbf{u} and \mathbf{v} satisfies

$$
\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta
$$

where θ is the angle between \mathbf{u} and \mathbf{v}.

Why is this true? It can be shown using pictures like when we were considering projections, where the projection of \mathbf{u} onto \mathbf{v} is $k \mathbf{v}$ (and the angle between \mathbf{u} and \mathbf{v} could be acute or obtuse).

If the angle θ is acute, then $\cos \theta$ is positive, and if θ is obtuse, then $\cos \theta$ is negative. We can show that in both cases, we have

$$
\cos \theta=\frac{k|\mathbf{v}|}{|\mathbf{u}|}
$$

But remember that we know $k=\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^{2}}$. Plug that in for k and watch what happens.

Dot product is also related to work. If a force \mathbf{F} on an object produces a displacement d, then the work done by the force is $\mathbf{F} \cdot \mathbf{d}$.

Informally, the dot product is a measure of 'similarity' between vectors. The dot product is positive if the angle between the vectors is close to 0 , and the dot product is negative if the angle between the vectors is close to 180 degrees.

