MAC 2313 Curves in space, arc length Week 3

Vector-valued functions and curves in space

We can have an ordered triple (z,y, z) in three-dimensional space where each component
x,y, 2 is a function of a variable ¢.

x = f(t)
=g(t)
z=h(t

It is often useful to think of ¢ as being time.

The three component functions make up a vector-valued function which traces out a
curve in space.

We can write a vector-valued function in various ways:

r=r(t) = (f(t),9(t), h(t))
= f(Oi+g(®)j+ h(t)k

EXAMPLE 1: Graph the vector-valued function.

r(t) = (cost,sint,t)
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Limits, continuity, and derivatives for vector-valued functions

Limits are defined componentwise: if r(t) = (f(t), g(t), h(t)), then

limr(t) = <lim f), %iirgg(t), lim h(t)>

t—c t—c t—c

A vector-valued function is continuous at a point if each of the component functions is
continuous there.

The derivative of a vector-valued function is mathematically defined as

() = Jim r(t + 5; —x(t)

Notice that we are subtracting two vectors and dividing/multiplying by a scalar.

We can calculate the derivative componentwise:

If r(t) = (f(t), g(t), h(t)) then x'(t) = (f'(t), g'(t), W'(t))-
Why? The key is that we have

r(t+0) —r(t) = (f(t+0) — f(t), gt +0) — g(t), h(t+ ) — h(t)).

So in Example 1, where we have
r(t) = (cost,sint,t)
we can differentiate each component to get
r'(t) = ( —sint, cost, 1)

What does this mean physically?

The vector r'(¢) will be tangent to the curve.
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Physical interpretation of vector-valued functions
Position vector = r(t)
Velocity vector = v(t) = r'(¢)
Speed (scalar) = |v(t)| = |v'(¢)]

Direction of motion = =T(t) (unit tangent vector)

EXAMPLE 2: Find the velocity, speed, and acceleration of a particle whose position in
three-dimensional space is given by

r(t) = (cost,sint,t)

EXAMPLE 3: For the given curve, find an expression for the unit tangent vector at a

general point.
2v/2
r(t) = <tcost, tsint, T\/_t3/2>
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Derivative rules for vector-valued functions
There are lots of these rules. Some examples are
d / /
= () vH) =) - v() +ut) V@)
d / /
E(u(t) X V(t)> — u/(t) x v(t) + u(t) x v'(1)
Remember that for cross product, the order matters!
Why are those rules true? Suppose u = (uq, ug, uz) and v = (v, va, v3).
We then have
U -V = U + UsV2 + U3V3
uxyv= <UQU3 — U3V2, U3V — UIV3, U1V — UQ’U1>
to which we can apply the product rule for scalar functions on the right.
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Integrals of vector-valued functions

An antiderivative of a vector-valued function can be found componentwise.

When we find a general antiderivative, we add an unknown constant.

When finding an antiderivative of a vector-valued function, the constant is a constant vector.

We could write the antiderivative of a vector-valued function as
/ r(t)dt = R(t) + C

or in component form

/<f(t),g(t), h(t)) dt = (F(t), G(t), H(1)) + (1, Cy, Cs)

where F, G, H are antiderivatives of f, g, h respectively.

EXAMPLE 4: Find the general antiderivative of the function.

r(t) = <6 — 6t, 3V, ;12>

The definite integral of a vector-valued function can be found componentwise:

If r(t) = (f(t),9(t),h(t)) then

/abr(t)dt = (/abf(t)dt>i+ (/abg(t)dt)j—l— (/jh(t)dt)k.

EXAMPLE 5: Evaluate the definite integral.

/3
/ <secttant, tant, 251ntcost>dt
0
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More physical applications of vector-valued functions

EXAMPLE 6: A golf ball has an initial position of
ro = (0,0,0)

and an initial velocity of
vo = (70,40, 80)

where distances are in feet and time is in seconds. If the acceleration due to gravity is
a(t) =a=(0,0,—32)

then express the future position of the golf ball as a function of time.

Motion with constant |r|

Suppose a moving particle has position function r = r(¢), and suppose |r| is constant. This
happens if the particle is constrained to lie on a circle (in R?) or sphere (in R®) with its
center at the origin. Then r-v = 0, which means the velocity vector is always perpendicular
to the position vector.

Why? If r(t) has constant magnitude ¢, then r(t) - r(t) = |r(t)]* = ¢ for all t. Then

S (x0)7(0) = S =0
v'(t)-r(t)+r(t)-r'(t) =0
2r(t) - 1'(t) =0
2r(t)-v(t) =0
r(t)-v(t) =0
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Length of curves in three dimensions
The length of a curve can be approximated by a large number of short diagonal line segments.

In two dimensions, a small piece of arc length is ds = /(dx)? + (dy)?

In three dimensions, we have ds = /(dx)? + (dy)? + (dz)?

The quantity ds is sometimes called the (scalar) element of arc length.

So the arc length formula in three dimensions is

t=b
Length of curve = / V(dx)? + (dy)? + (dz)?

t=
b 2 2 2
dx dy dz
- i il ) ar
VG (@) ()
b b
We can write this more compactly as / |t'(t)| dt or as / |v(t)| dt. This has a physical

interpretation: The total length traveled s the integral of s(f)eed with respect to time.

EXAMPLE 7: Find the length of the portion of the curve
r(t) = (6sin2t, 6cos2t, 5t)

between t =0 and t = 7.
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Arc length function

We can measure arc length from a starting point to a general point.

s(t):/at|r’(u)|du:/at v (w)| du

In some cases, this may be a nice function. We can parameterize a curve in terms of its arc
length (although this might be difficult or impossible to do explicitly).

By the Fundamental Theorem of Calculus, the above formula implies

ds ,
= )] = ()]

which has a physical interpretation: Derivative of length traveled with respect to time is
equal to speed.

EXAMPLE 8: Find the arc length function for the curve defined by
r(t) = (6t°, —2t°, —3t%)

If possible, reparameterize the curve in terms of its arc length.

If our curve is parameterized in a reasonable way, then the arc length function

s(t) = /at It (u)] du

will be an increasing function of ¢, which means it is invertible, so in principle we can write ¢
as a function of s (although in many cases, doing this explicitly will be difficult or impossible).

Parameterizing a curve with respect to arc length is equivalent to traveling along the curve
at constant unit speed.
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