Vector-valued functions and curves in space

We can have an ordered triple $\langle x, y, z\rangle$ in three-dimensional space where each component x, y, z is a function of a variable t.

$$
\begin{aligned}
& x=f(t) \\
& y=g(t) \\
& z=h(t)
\end{aligned}
$$

It is often useful to think of t as being time.

The three component functions make up a vector-valued function which traces out a curve in space.

We can write a vector-valued function in various ways:

$$
\begin{aligned}
\mathbf{r}=\mathbf{r}(t) & =\langle f(t), g(t), h(t)\rangle \\
& =f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}
\end{aligned}
$$

EXAMPLE 1: Graph the vector-valued function.

$$
\mathbf{r}(t)=\langle\cos t, \sin t, t\rangle
$$

Limits, continuity, and derivatives for vector-valued functions

Limits are defined componentwise: if $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$, then

$$
\lim _{t \rightarrow c} \mathbf{r}(t)=\left\langle\lim _{t \rightarrow c} f(t), \lim _{t \rightarrow c} g(t), \lim _{t \rightarrow c} h(t)\right\rangle
$$

A vector-valued function is continuous at a point if each of the component functions is continuous there.

The derivative of a vector-valued function is mathematically defined as

$$
\mathbf{r}^{\prime}(t)=\lim _{\delta \rightarrow 0} \frac{\mathbf{r}(t+\delta)-\mathbf{r}(t)}{\delta}
$$

Notice that we are subtracting two vectors and dividing/multiplying by a scalar.

We can calculate the derivative componentwise:

If $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$ then $\mathbf{r}^{\prime}(t)=\left\langle f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)\right\rangle$.

Why? The key is that we have

$$
\mathbf{r}(t+\delta)-\mathbf{r}(t)=\langle f(t+\delta)-f(t), g(t+\delta)-g(t), h(t+\delta)-h(t)\rangle .
$$

So in Example 1, where we have

$$
\mathbf{r}(t)=\langle\cos t, \sin t, t\rangle
$$

we can differentiate each component to get

$$
\mathbf{r}^{\prime}(t)=\langle-\sin t, \cos t, 1\rangle
$$

What does this mean physically?

The vector $\mathbf{r}^{\prime}(t)$ will be tangent to the curve.

Physical interpretation of vector-valued functions

$$
\begin{aligned}
\text { Position vector } & =\mathbf{r}(t) \\
\text { Velocity vector } & =\mathbf{v}(t)=\mathbf{r}^{\prime}(t) \\
\text { Speed (scalar) } & =|\mathbf{v}(t)|=\left|\mathbf{r}^{\prime}(t)\right| \\
\text { Direction of motion } & =\frac{\mathbf{v}(t)}{|\mathbf{v}(t)|}=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}=\mathbf{T}(t) \quad \text { (unit tangent vector) } \\
\text { Acceleration } & =\mathbf{a}(t)=\mathbf{v}^{\prime}(t)=\mathbf{r}^{\prime \prime}(t)
\end{aligned}
$$

EXAMPLE 2: Find the velocity, speed, and acceleration of a particle whose position in three-dimensional space is given by

$$
\mathbf{r}(t)=\langle\cos t, \sin t, t\rangle
$$

EXAMPLE 3: For the given curve, find an expression for the unit tangent vector at a general point.

$$
\mathbf{r}(t)=\left\langle t \cos t, t \sin t, \frac{2 \sqrt{2}}{3} t^{3 / 2}\right\rangle
$$

Derivative rules for vector-valued functions

There are lots of these rules. Some examples are

$$
\begin{aligned}
\frac{d}{d t}(\mathbf{u}(t) \cdot \mathbf{v}(t)) & =\mathbf{u}^{\prime}(t) \cdot \mathbf{v}(t)+\mathbf{u}(t) \cdot \mathbf{v}^{\prime}(t) \\
\frac{d}{d t}(\mathbf{u}(t) \times \mathbf{v}(t)) & =\mathbf{u}^{\prime}(t) \times \mathbf{v}(t)+\mathbf{u}(t) \times \mathbf{v}^{\prime}(t)
\end{aligned}
$$

Remember that for cross product, the order matters!

Why are those rules true? Suppose $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$.

We then have

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{v} & =u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3} \\
\mathbf{u} \times \mathbf{v} & =\left\langle u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right\rangle
\end{aligned}
$$

to which we can apply the product rule for scalar functions on the right.

Integrals of vector-valued functions

An antiderivative of a vector-valued function can be found componentwise.

When we find a general antiderivative, we add an unknown constant.

When finding an antiderivative of a vector-valued function, the constant is a constant vector.

We could write the antiderivative of a vector-valued function as

$$
\int \mathbf{r}(t) d t=\mathbf{R}(t)+\mathbf{C}
$$

or in component form

$$
\int\langle f(t), g(t), h(t)\rangle d t=\langle F(t), G(t), H(t)\rangle+\left\langle C_{1}, C_{2}, C_{3}\right\rangle
$$

where F, G, H are antiderivatives of f, g, h respectively.

EXAMPLE 4: Find the general antiderivative of the function.

$$
\mathbf{r}(t)=\left\langle 6-6 t, 3 \sqrt{t}, \frac{4}{t^{2}}\right\rangle
$$

The definite integral of a vector-valued function can be found componentwise:

If $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$ then

$$
\int_{a}^{b} \mathbf{r}(t) d t=\left(\int_{a}^{b} f(t) d t\right) \mathbf{i}+\left(\int_{a}^{b} g(t) d t\right) \mathbf{j}+\left(\int_{a}^{b} h(t) d t\right) \mathbf{k}
$$

EXAMPLE 5: Evaluate the definite integral.

$$
\int_{0}^{\pi / 3}\langle\sec t \tan t, \tan t, 2 \sin t \cos t\rangle d t
$$

More physical applications of vector-valued functions

EXAMPLE 6: A golf ball has an initial position of

$$
\mathbf{r}_{0}=\langle 0,0,0\rangle
$$

and an initial velocity of

$$
\mathbf{v}_{0}=\langle 70,40,80\rangle
$$

where distances are in feet and time is in seconds. If the acceleration due to gravity is

$$
\mathbf{a}(t)=\mathbf{a}=\langle 0,0,-32\rangle
$$

then express the future position of the golf ball as a function of time.

Motion with constant $|\mathbf{r}|$

Suppose a moving particle has position function $\mathbf{r}=\mathbf{r}(t)$, and suppose $|\mathbf{r}|$ is constant. This happens if the particle is constrained to lie on a circle (in \mathbb{R}^{2}) or sphere (in \mathbb{R}^{3}) with its center at the origin. Then $\mathbf{r} \cdot \mathbf{v}=0$, which means the velocity vector is always perpendicular to the position vector.

Why? If $\mathbf{r}(t)$ has constant magnitude c, then $\mathbf{r}(t) \cdot \mathbf{r}(t)=|\mathbf{r}(t)|^{2}=c^{2}$ for all t. Then

$$
\begin{aligned}
\frac{d}{d t}(\mathbf{r}(t) \cdot \mathbf{r}(t)) & =\frac{d}{d t}\left(c^{2}\right)=0 \\
\mathbf{r}^{\prime}(t) \cdot \mathbf{r}(t)+\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t) & =0 \\
2 \mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t) & =0 \\
2 \mathbf{r}(t) \cdot \mathbf{v}(t) & =0 \\
\mathbf{r}(t) \cdot \mathbf{v}(t) & =0
\end{aligned}
$$

Length of curves in three dimensions

The length of a curve can be approximated by a large number of short diagonal line segments.
In two dimensions, a small piece of arc length is $d s=\sqrt{(d x)^{2}+(d y)^{2}}$
In three dimensions, we have $d s=\sqrt{(d x)^{2}+(d y)^{2}+(d z)^{2}}$

The quantity $d s$ is sometimes called the (scalar) element of arc length.

So the arc length formula in three dimensions is

$$
\begin{aligned}
\text { Length of curve } & =\int_{t=a}^{t=b} \sqrt{(d x)^{2}+(d y)^{2}+(d z)^{2}} \\
& =\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
\end{aligned}
$$

We can write this more compactly as $\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t$ or as $\int_{a}^{b}|\mathbf{v}(t)| d t$. This has a physical interpretation: The total length traveled is the integral of speed with respect to time.

EXAMPLE 7: Find the length of the portion of the curve

$$
\mathbf{r}(t)=\langle 6 \sin 2 t, 6 \cos 2 t, 5 t\rangle
$$

between $t=0$ and $t=\pi$.

Arc length function

We can measure arc length from a starting point to a general point.

$$
s(t)=\int_{a}^{t}\left|\mathbf{r}^{\prime}(u)\right| d u=\int_{a}^{t}|\mathbf{v}(u)| d u
$$

In some cases, this may be a nice function. We can parameterize a curve in terms of its arc length (although this might be difficult or impossible to do explicitly).

By the Fundamental Theorem of Calculus, the above formula implies

$$
\frac{d s}{d t}=\left|\mathbf{r}^{\prime}(t)\right|=|\mathbf{v}(t)|
$$

which has a physical interpretation: Derivative of length traveled with respect to time is equal to speed.

EXAMPLE 8: Find the arc length function for the curve defined by

$$
\mathbf{r}(t)=\left\langle 6 t^{3},-2 t^{3},-3 t^{3}\right\rangle
$$

If possible, reparameterize the curve in terms of its arc length.

If our curve is parameterized in a reasonable way, then the arc length function

$$
s(t)=\int_{a}^{t}\left|\mathbf{r}^{\prime}(u)\right| d u
$$

will be an increasing function of t, which means it is invertible, so in principle we can write t as a function of s (although in many cases, doing this explicitly will be difficult or impossible).

Parameterizing a curve with respect to arc length is equivalent to traveling along the curve at constant unit speed.

