If a curve is parameterized in a reasonable way, then the arc length function

$$
s(t)=\int_{a}^{t}\left|\mathbf{r}^{\prime}(u)\right| d u
$$

will be an increasing function of t, which means it is invertible, so in principle we can write t as a function of s (although in many cases, doing this explicitly will be difficult or impossible).

Parameterizing a curve with respect to arc length is equivalent to traveling along the curve at constant unit speed.

The unit tangent vector $\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}$ can be regarded as a function of the arc length s.
Curvature is defined as

$$
\kappa=\left|\frac{d \mathbf{T}}{d s}\right|
$$

(the magnitude of the rate of change of the unit tangent vector as we travel along the curve at constant unit speed).

Curvature can be equivalently expressed as

$$
\begin{aligned}
\kappa & =\left|\frac{d \mathbf{T}}{d s}\right|=\left|\frac{d \mathbf{T}}{d t} \frac{d t}{d s}\right| \\
& =\frac{1}{|d s / d t|}\left|\frac{d \mathbf{T}}{d t}\right| \\
& =\frac{1}{\left|\mathbf{r}^{\prime}(t)\right|}\left|\frac{d \mathbf{T}}{d t}\right| \quad \text { or more briefly } \frac{\left|\mathbf{T}^{\prime}\right|}{\left|\mathbf{r}^{\prime}\right|}
\end{aligned}
$$

EXAMPLE 1: Find the curvature of the curve given below.

$$
\mathbf{r}(t)=\langle 7+2 t,-1+3 t, 4+5 t\rangle
$$

EXAMPLE 2: Find the curvature of the curve given below.

$$
\mathbf{r}(t)=\langle 5 \cos t, 5 \sin t, 0\rangle
$$

EXAMPLE 3: Find the curvature of the curve given below.

$$
\mathbf{r}(t)=\langle\cos t, \sin t, t\rangle
$$

For some relatively simple curves, it is time-consuming to compute curvature using the formula $\left|\mathbf{T}^{\prime}\right| /\left|\mathbf{r}^{\prime}\right|$. (The tricky part is usually \mathbf{T}^{\prime}.)

$$
\begin{array}{ll}
\mathbf{r}(t) & =\left\langle t, t^{2}, 0\right\rangle \\
\mathbf{r}(t) & =\langle 3 \cos t, 2 \sin t, 0\rangle
\end{array} \quad \text { (ellipse) }
$$

Hence it is useful to have an alternative formula for curvature.

How do we get an alternative formula for curvature?

Recall that we often write $\mathbf{v}=\mathbf{r}^{\prime}$ and $\mathbf{a}=\mathbf{v}^{\prime}=\mathbf{r}^{\prime \prime}$. Then $\mathbf{T}=\mathbf{v} /|\mathbf{v}|$, and we have

$$
\begin{align*}
\mathbf{v} & =|\mathbf{v}| \mathbf{T} \\
\Longrightarrow \mathbf{a}=\mathbf{v}^{\prime} & =|\mathbf{v}|^{\prime} \mathbf{T}+|\mathbf{v}| \mathbf{T}^{\prime} \tag{1}
\end{align*}
$$

where we have used the version of the product rule for a scalar times a vector.

Since \mathbf{T} is a unit vector, it has constant magnitude, implying that \mathbf{T}^{\prime} is orthogonal to \mathbf{T}. So equation (1) above can be written as

$$
\mathbf{a}=\mathbf{u}_{1}+\mathbf{u}_{2}
$$

where $\mathbf{u}_{1}=|\mathbf{v}|^{\prime} \mathbf{T}$ is a vector parallel to \mathbf{T} (and \mathbf{v}), and $\mathbf{u}_{2}=|\mathbf{v}| \mathbf{T}^{\prime}$ is a vector orthogonal to \mathbf{T} (and \mathbf{v}). We can then form the cross product of \mathbf{v} with \mathbf{a} :

$$
\mathbf{v} \times \mathbf{a}=\left(\mathbf{v} \times \mathbf{u}_{1}\right)+\left(\mathbf{v} \times \mathbf{u}_{2}\right) .
$$

Since \mathbf{v} and \mathbf{u}_{1} are parallel, we have $\mathbf{v} \times \mathbf{u}_{1}=0$, giving us

$$
\mathbf{v} \times \mathbf{a}=\mathbf{v} \times \mathbf{u}_{2} .
$$

Since \mathbf{v} and \mathbf{u}_{2} are orthogonal, the angle θ between them is $\pi / 2$, so we have

$$
|\mathbf{v} \times \mathbf{a}|=\left|\mathbf{v} \times \mathbf{u}_{\mathbf{2}}\right|=|\mathbf{v}|\left|\mathbf{u}_{2}\right| \sin \theta=|\mathbf{v}|\left|\mathbf{u}_{2}\right|=|\mathbf{v}|^{2}\left|\mathbf{T}^{\prime}\right| .
$$

This implies

$$
\frac{|\mathbf{v} \times \mathbf{a}|}{|\mathbf{v}|^{3}}=\frac{\left|\mathbf{T}^{\prime}\right|}{|\mathbf{v}|}
$$

and the quantity on the left is our alternative formula for curvature.

Principal unit normal vector

As before, suppose $\mathbf{r}(t)$ is a vector-valued function that describes a curve. Then $\mathbf{T}(t)=$ $\mathbf{r}^{\prime}(t) /\left|\mathbf{r}^{\prime}(t)\right|$ is the unit tangent vector to the curve.

Since $\mathbf{T}(t)$ is a unit vector, this means $\mathbf{T}(t)$ has constant magnitude, which implies that $\mathbf{T}^{\prime}(t)$ is orthogonal to $\mathbf{T}(t)$, and hence also orthogonal to the curve.

Therefore the vector $\mathbf{T}^{\prime}(t) /\left|\mathbf{T}^{\prime}(t)\right|$ is a unit vector that is orthogonal to the curve. We write

$$
\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|}
$$

and refer to this as the principal unit normal vector to the curve.

