Partial derivatives

Given a function of several variables

$$
f(x, y) \quad \text { or } \quad f(x, y, z)
$$

we can take the derivative with respect to one of the inputs.

That means letting just that input change and the others remain constant.

For example,

$$
\frac{d}{d y}\left(f\left(x_{0}, y, z_{0}\right)\right)=\lim _{\Delta y \rightarrow 0} \frac{f\left(x_{0}, y+\Delta y, z_{0}\right)-f\left(x_{0}, y, z_{0}\right)}{\Delta y}
$$

and similarly for the other variables.

This represents rate of change of f if we move parallel to a coordinate axis.

EXAMPLE 1: If $f(x, y)=9 x^{2} y^{4}-2 x^{5} y^{3}$, find $\frac{d f}{d x}$ and $\frac{d f}{d y}$.

Notation for partial derivatives

We often use curly d's:

$$
\frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y} \quad \frac{\partial f}{\partial z}
$$

We also sometimes use subscripts:

$$
f_{x}=\frac{\partial f}{\partial x} \quad f_{y}=\frac{\partial f}{\partial y} \quad f_{z}=\frac{\partial f}{\partial z}
$$

EXAMPLE 2: If $g(x, y)=\left(x^{2}+5 x-2 y\right)^{8}$, find $\frac{\partial g}{\partial x}$ and $\frac{\partial g}{\partial y}$.

Higher-order partial derivatives

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x^{2}} & =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=f_{x x} \\
\frac{\partial^{2} f}{\partial y \partial x} & =\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=f_{x y} \\
\frac{\partial^{2} f}{\partial x \partial y} & =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=f_{y x} \\
\frac{\partial^{2} f}{\partial y^{2}} & =\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=f_{y y}
\end{aligned}
$$

Fact: If $f(x, y)$ and its partial derivatives are all continuous at a point, then the 'mixed' partial derivatives $f_{x y}$ and $f_{y x}$ will be equal there.

EXAMPLE 3: If $f(x, y)=x^{2} y^{3}+x^{4} y^{5}$, find all second-order partial derivatives of f.

If f is a function of two (or more) variables, what do we mean when we say f is 'differentiable'?

For functions of one variable, it means there is a well-defined tangent line.

For functions of two variables, it means there is a well-defined tangent plane.

Compare and contrast the following two examples.
$f(x, y)=x^{2}+y^{2}($ paraboloid $)$
$f(x, y)=\sqrt{x^{2}+y^{2}}$ (top half of cone)
The first is differentiable at all points, and the second is differentiable everywhere except $(0,0)$.

The chain rule

Example: Suppose w is a function of three variables x, y, z and then each of x, y, z is a function of t.

Then $\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t}$.
An excellent way to visualize this is to draw a diagram showing the 'dependencies' of the variables.
w depends on x, y, z, and each of x, y, z depends on t

A change in t can cause changes in x, y, z, each of which can cause changes in w.

Another example: Suppose w is a function of x, y, z, and each of x, y, z is a function of two variables u and v.

In that example, we have

$$
\begin{aligned}
& \frac{\partial w}{\partial u}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial u}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial u} \\
& \frac{\partial w}{\partial v}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial v}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial v}
\end{aligned}
$$

Idea: We must consider all possible 'routes' through which a change in u or v could cause a change in w.

EXAMPLE 4: If we are given

$$
\begin{aligned}
& z=8 x^{2} y-2 x+3 y \\
& x=u v \\
& y=u-v
\end{aligned}
$$

then find $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$.

Directional derivatives and gradients

Suppose $f(x, y)$ is a function of two variables.
Recall the partial derivatives $f_{x}=\frac{\partial f}{\partial x}$ and $f_{y}=\frac{\partial f}{\partial y}$.
Informally: $f_{x}=$ rate of change of f if we move slightly in the x direction.
Similarly for f_{y}.

Directional derivative of f at $\left(x_{0}, y_{0}\right)$ in the direction \mathbf{u} (where \mathbf{u} is a unit vector)

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)
$$

Idea: Rate of change of f with respect to s if (x, y) moves a small distance s from $\left(x_{0}, y_{0}\right)$ in the direction of \mathbf{u}.

Mathematical definition

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=\frac{d}{d s}\left[f\left(\left(x_{0}, y_{0}\right)+s \mathbf{u}\right)\right]
$$

Similar definition for functions of three (or more) variables.

How do we compute directional derivatives?

In two dimensions: Say $\mathbf{u}=\left(u_{1}, u_{2}\right)$.

Then $D_{\mathbf{u}} f=f_{x} u_{1}+f_{y} u_{2}$.
In three dimensions: Say $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$.

Then $D_{\mathbf{u}} f=f_{x} u_{1}+f_{y} u_{2}+f_{z} u_{3}$.

Note: Those can be thought of as dot products.

$$
\begin{aligned}
f_{x} u_{1}+f_{y} u_{2} & =\left(f_{x}, f_{y}\right) \cdot\left(u_{1}, u_{2}\right) \\
f_{x} u_{1}+f_{y} u_{2}+f_{z} u_{3} & =\left(f_{x}, f_{y}, f_{z}\right) \cdot\left(u_{1}, u_{2}, u_{3}\right)
\end{aligned}
$$

The vector $\left(f_{x}, f_{y}\right)$ or $\left(f_{x}, f_{y}, f_{z}\right)$ is called the gradient of f.

The gradient of f is denoted ∇f.

$$
\nabla f=\left(f_{x}, f_{y}\right) \quad \text { or } \quad \nabla f=\left(f_{x}, f_{y}, f_{z}\right)
$$

The symbol ∇ is pronounced 'gradient' or 'grad' or 'del' or 'nabla'.

The directional derivative can be expressed more briefly as

$$
D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}
$$

EXAMPLE 5: Find the directional derivative of $f(x, y)=4 x^{3} y^{2}$ at $\left(x_{0}, y_{0}\right)=(2,1)$ in the direction of $\mathbf{a}=(4,-3)$.

Relationship between gradients and level curves / level surfaces
For example, consider $f(x, y)=x^{2}+y^{2}$.

We previously saw that the level curves are circles centered at the origin.

Suppose you're standing at the point $\left(x_{0}, y_{0}\right)=(2,3)$.

How would f change if you moved in various directions?

Remember, directional derivative is a dot product.

$$
D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}
$$

Suppose you're standing at $\left(x_{0}, y_{0}\right)$, trying to decide which direction to go.

$$
D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}=|\nabla f||\mathbf{u}| \cos \theta
$$

where θ is the angle between ∇f and \mathbf{u}.

Directional derivative is $D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}=|\nabla f||\mathbf{u}| \cos \theta$

Directional derivative is positive if θ is between 0 and $\pi / 2$.
Directional derivative is zero if θ is equal to $\pi / 2$.

Directional derivative is negative if θ is between $\pi / 2$ and π.

Directional derivative is largest if \mathbf{u} has exactly the same direction as the gradient.

Directional derivative is smallest if \mathbf{u} has exactly opposite direction to gradient.

Gradients are perpendicular to level curves or level surfaces.

The gradient points in the direction of steepest increase of f.

