The tangent plane to a surface

Suppose we have a function of three variables. For example,

$$
f(x, y, z)=x^{2}+4 y^{2}+z^{2}
$$

Then surfaces of the form $f(x, y, z)=C$ are the level surfaces.
For example, $x^{2}+4 y^{2}+z^{2}=18$.

Note that $(1,2,1)$ is an example of a point on this surface.

How do we find the tangent plane to the surface $f(x, y, z)=C$ at the point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$?

Key: The gradient is always perpendicular to the level surface.

So the gradient is also perpendicular to the tangent plane.

To get an equation of a plane, we need a normal vector to the plane.

The 'normal line' to a surface at a point is the line through that point perpendicular to the surface.

If an equation of the surface is $f(x, y, z)=C$, then the normal line would be in the direction of the gradient at that point.

EXAMPLE 1: Find the tangent plane and normal line to the given surface at the given point.

$$
x^{2}+2 x y-y^{2}+z^{2}=7, \quad P_{0}=(1,-1,3)
$$

A surface can also be given in the form $z=f(x, y)$.

EXAMPLE 2: Find the tangent plane and normal line to the surface $z=e^{-\left(x^{2}+y^{2}\right)}$ at the point $(0,0,1)$.

One way to do this is to rewrite in the form $f(x, y)-z=0$.

Another way to think about tangent planes when $z=f(x, y)$

$$
\begin{aligned}
(\text { change in } f) & =(\text { change in } f \text { caused by } x)+(\text { change in } f \text { caused by } y) \\
z-z_{0} & =f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
\end{aligned}
$$

This lets us approximate a nonlinear function with a linear one.
(Note that an equation of the form $z=A x+B y+C$ defines a plane.)

EXAMPLE 3: Find an equation of the tangent plane to the surface $z=\sqrt{y-x}$ at the point $(1,2,1)$.

Then use this to estimate the change in z if x changes from 1 to 0.998 and y changes from 2 to 2.006.

Extreme values and saddle points

Suppose f is a function of two variables x and y.
$f(a, b)$ is a local maximum if $f(a, b) \geq f(x, y)$ for all (x, y) near (a, b).
$f(a, b)$ is a local minimum if $f(a, b) \leq f(x, y)$ for all (x, y) near (a, b).

How do we determine if we have a max, min, or neither?

A critical point for a function $f(x, y)$ is a point where the partial derivatives f_{x} and f_{y} are both 0 , or where one or both of the partial derivatives fails to exist.

Critical points are candidates for extrema. They could be a max, a min, or neither.

EXAMPLE 4: Find all critical points for each of the following functions.
$f(x, y)=x^{2}+y^{2}$
$g(x, y)=-x^{2}-y^{2}$
$h(x, y)=x^{2}-y^{2}$

We say f has a saddle point at (a, b) if every neighborhood of (a, b) contains some (x, y) with $f(x, y)>f(a, b)$ and some (x, y) with $f(x, y)<f(a, b)$.

In other words, a saddle point is neither a max nor a min. If you're standing at a saddle point, then some nearby points are above you and some nearby points are below you.

EXAMPLE 5: Find all critical points of the function.

$$
f(x, y)=y^{2}+x y+3 y+2 x+3
$$

Second derivative test for local extrema

Suppose f and its derivatives are continuous.

Calculate $D=f_{x x} f_{y y}-f_{x y}^{2}$, which is the same as the determinant

$$
\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|
$$

If D is positive, then 'yes, it's an extremum', then one more step
If D is negative, then 'not an extremum', i.e. 'saddle point'
If D is zero, then 'inconclusive', WE DON'T KNOW YET

The 'one more step' is: Look just at $f_{x x}$.
$f_{x x}>0 \Longrightarrow \min , f_{x x}<0 \Longrightarrow \max$

EXAMPLE 6: Apply the second derivative test to each of the following.
$f(x, y)=x^{2}+y^{2}$
$g(x, y)=-x^{2}-y^{2}$
$h(x, y)=x^{2}-y^{2}$

EXAMPLE 7: Find and classify all critical points of the function.

$$
f(x, y)=6 x+6 y-x^{2}-y^{2}
$$

EXAMPLE 8: Find and classify all critical points of the function.

$$
f(x, y)=3 x y-x^{3}-y^{3}
$$

Absolute maxima and minima on bounded regions
Summary: You need to check
All critical points in the interior of the region
All points on the boundary of the region.

EXAMPLE 9: Find the absolute maximum and absolute minimum of $f(x, y)=x y-x-2 y$ in the triangular region bounded by

$$
x=0, \quad y=0, \quad x+y=4
$$

