Multiple integrals

We already know about single integrals $\int_{a}^{b} f(x) d x$.
Here, $[a, b]$ is an interval and $d x$ is a small change in x.
We can think of $f(x) \cdot d x=($ height $) \cdot($ width $)$ as a small area.

Now suppose $f(x, y)$ is a function of two variables.

The inputs (x, y) are points in the $x y$-plane or 'floor'.

We consider double integrals over regions in the plane.

$$
\iint_{R} f(x, y) d A
$$

$R=$ name of region, $d A=$ 'element of area'

We could think of $f(x, y)$ as the 'height' above the point (x, y).

Then $f(x, y) \cdot d A=($ height $) \cdot($ area $)=$ small piece of volume.

We could also think of $f(x, y)$ as temperature, density, etc.

How do we evaluate double integrals?

Simplest is if the region is a rectangle, say $a \leq x \leq b$ and $c \leq y \leq d$.
Then the double integral $\iint_{R} f(x, y) d A$ is equal to an iterated integral:

$$
\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x
$$

or

$$
\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y=\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y
$$

We can evaluate an iterated integral from the 'inside out'.

When integrating with respect to one variable, we temporarily regard the other as constant.
EXAMPLE 1: Evaluate the integral $\int_{0}^{3} \int_{-3}^{0}\left(x^{2} y-2 x y\right) d y d x$

EXAMPLE 2: Evaluate the integral.

$$
\int_{0}^{1} \int_{0}^{1} \frac{y}{1+x y} d x d y
$$

Double integrals over more general regions

Type 1 region: Bounds on x are constants, bounds on y are functions of x

Type 2 region: Bounds on y are constants, bounds on x are functions of y

For a Type 1 region, the bounds have the following form.

$$
\begin{aligned}
a & \leq x \leq b \\
g_{1}(x) & \leq y \leq g_{2}(x)
\end{aligned}
$$

For a Type 2 region, the bounds have the following form.

$$
\begin{aligned}
c & \leq y \leq d \\
h_{1}(y) & \leq x \leq h_{2}(y)
\end{aligned}
$$

In both cases, the bounds on the outermost variable must be constants.

EXAMPLE 3: Evaluate the integral

$$
\iint_{R}(x+y) d A
$$

where R is the region bounded by $y=x^{2}$ and $y=\sqrt{x}$.

Reversing the order of integration

Some regions can be described as Type 1 or Type 2.

EXAMPLE 4: Sketch the region of integration and write an equivalent double integral with the order of integration reversed.

$$
\int_{0}^{1} \int_{2}^{4-2 x} 5 d y d x
$$

EXAMPLE 5: Sketch the region of integration, reverse the order of integration, and evaluate the integral.

$$
\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin y}{y} d y d x
$$

Area and average value

The area of a closed bounded region R is

$$
\iint_{R} 1 d A=\iint_{R} d A
$$

The average value of a function f over a region R is

$$
\frac{1}{\text { (area of } R \text {) }} \cdot \iint_{R} f(x, y) d A
$$

EXAMPLE 6: Sketch the region bounded by the parabolas $x=y^{2}-1$ and $x=2 y^{2}-2$. Then express the region's area as an iterated double integral and evaluate the integral.

EXAMPLE 7: Find the average value of $f(x, y)=\sin (x+y)$ over
(i) the rectangle $0 \leq x \leq \pi, 0 \leq y \leq \pi$
(ii) the rectangle $0 \leq x \leq \pi, 0 \leq y \leq \pi / 2$

EXAMPLE 8: Which do you think will be larger, the average value of $f(x, y)=x y$ over the square $0 \leq x \leq 1,0 \leq y \leq 1$, or the average value of f over the quarter circle $x^{2}+y^{2} \leq 1$ in the first quadrant?

Calculate them to find out.

