Double integrals in polar coordinates

Some regions in the plane are easier to describe in polar coordinates than in rectangular coordinates.

Some examples:
$0 \leq r \leq 5$ and $0 \leq \theta \leq 2 \pi$
$0 \leq r \leq 2$ and $0 \leq \theta \leq \pi / 2$
$2 \leq r \leq 3$ and $0 \leq \theta \leq \pi$

In those three examples, the bounds on r and θ were all constants.

We can also have equations where r is a function of θ.

One example: The curve $r=1+\cos \theta$ ('cardioid')

We could have a region in the plane bounded by two functions of the form $r=f(\theta)$ and $r=g(\theta)$. (Maybe one of the functions is 0 , but maybe not.)

We sometimes have a function f that we need to integrate over a region R in the $x y$ plane.

$$
\iint_{R} f(x, y) d A
$$

When using rectangular coordinates, we have $d A=d x d y=d y d x$.

What's the correct element of area in polar coordinates?

IMPORTANT FACT: In polar coordinates, the element of area is

$$
d A=r d r d \theta
$$

Loosely speaking, it looks like there's an 'extra' r, but it's there for a very good reason.

EXAMPLE 1: Evaluate the integral.

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}}\left(x^{2}+y^{2}\right) d y d x
$$

EXAMPLE 2: Evaluate the integral.

$$
\int_{1}^{\sqrt{3}} \int_{1}^{x} d y d x
$$

EXAMPLE 3: Evaluate the integral.

$$
\int_{0}^{\ln 2} \int_{0}^{\sqrt{(\ln 2)^{2}-y^{2}}} e^{\sqrt{x^{2}+y^{2}}} d x d y
$$

