Triple integrals in rectangular coordinates

If G is a region in three-dimensional space, we write

$$
\iiint_{G} f(x, y, z) d V
$$

to mean the integral of $f(x, y, z)$ over the region G.

Here, f is a scalar-valued function (e.g. density or temperature as a function of location in space)

One common situation: G is bounded by a 'bottom surface' $z=g_{1}(x, y)$ and a 'top surface' $z=g_{2}(x, y)$, and lies above* a two-dimensional region R in the $x y$ plane.

If G is this type of three-dimensional region, then the bounds on z depend on x and y.
In that case, z must go inside x and y in the order of integration.

EXAMPLE. Suppose we want to integrate some function over the interior of the sphere $x^{2}+y^{2}+z^{2} \leq 1$.

Boundary $x^{2}+y^{2}+z^{2}=1 \Longrightarrow z^{2}=1-x^{2}-y^{2}$
'Top surface' $z=\sqrt{1-x^{2}-y^{2}}$
'Bottom surface' $z=-\sqrt{1-x^{2}-y^{2}}$

So in that case we would have

$$
\iiint_{G} f(x, y, z) d V=\iint_{R}\left(\int_{-\sqrt{1-x^{2}-y^{2}}}^{\sqrt{1-x^{2}-y^{2}}} f(x, y, z) d z\right) d A
$$

where R is the unit disk in the $x y$-plane.

For example, if we want to find the volume of G, we would integrate $f(x, y, z)=1$.

EXAMPLE 1: Evaluate the integral.

$$
\int_{0}^{\sqrt{2}} \int_{0}^{3 y} \int_{x^{2}+3 y^{2}}^{8-x^{2}-y^{2}} d z d x d y
$$

EXAMPLE 2: Evaluate the integral.

$$
\int_{0}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} \int_{0}^{2 x+y} d z d x d y
$$

Cylindrical coordinates

Cylindrical coordinates are 'polar coordinates with z '.

Relationship between rectangular and cylindrical coordinates:

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& z=z
\end{aligned}
$$

How to integrate in cylindrical coordinates?

IMPORTANT FACT: In cylindrical coordinates, the element of volume is

$$
d V=r d z d r d \theta
$$

Just as with polar coordinates in two dimensions, there is a seemingly 'extra' r. However, it is there for a very good reason (a geometric reason).

Spherical coordinates

Spherical coordinates (ρ, ϕ, θ) consist of a radius and two angles.
$\rho=$ distance from the origin
$\phi=$ angle measured from the positive z-axis
$\theta=$ angle in the $x y$ plane, like before

Relationship between rectangular and spherical coordinates

$$
\begin{aligned}
& x=\rho \sin \phi \cos \theta \\
& y=\rho \sin \phi \sin \theta \\
& z=\rho \cos \phi
\end{aligned}
$$

Why is this? One possible answer: Take cylindrical coordinates, and replace r with $\rho \sin \phi$ and replace z with $\rho \cos \phi$.

Also notice: We go once around the whole sphere if $0 \leq \theta \leq 2 \pi$ and $0 \leq \phi \leq \pi$.

How to integrate in spherical coordinates?

IMPORTANT FACT: In spherical coordinates, the element of volume is

$$
d V=\rho^{2} \sin \phi d \rho d \phi d \theta
$$

So now, there's an 'extra' $\rho^{2} \sin \phi$. Why is that? There is both a geometric and an algebraic reason.

EXAMPLE 3: Let D be the region bounded below by the plane $z=0$, above by the sphere $x^{2}+y^{2}+z^{2}=4$, and on the sides by the cylinder $x^{2}+y^{2}=1$. Find the volume of D using cylindrical coordinates.

EXAMPLE 4: Let D be the region bounded below by the cone $z=\sqrt{x^{2}+y^{2}}$ and above by the plane $z=1$. Find the volume of D using spherical coordinates.

Where does the 'extra' r come from in polar and cylindrical coordinates, and the 'extra' $\rho^{2} \sin \phi$ in spherical coordinates?

Suppose we do any change of variables in two dimensions. Suppose the 'old' variables x and y are rewritten using two 'new' variables u and v.

The Jacobian of the transformation is the following determinant.

$$
\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|
$$

In three dimensions, suppose the 'old' variables x, y, z are rewritten using 'new' variables u, v, w. The Jacobian in that case is

$$
\left|\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right|
$$

Let's calculate the Jacobian for each of the following transformations.

Rectangular to polar (two dimensions)

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

Rectangular to cylindrical (three dimensions)

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& z=z
\end{aligned}
$$

Rectangular to spherical (three dimensions)

$$
\begin{aligned}
& x=\rho \sin \phi \cos \theta \\
& y=\rho \sin \phi \sin \theta \\
& z=\rho \cos \phi
\end{aligned}
$$

