Vector fields

A vector field in \mathbb{R}^{2} (or \mathbb{R}^{3}) is a function that assigns a vector to each point in \mathbb{R}^{2} (or \mathbb{R}^{3}).

In other words, a vector field is a vector-valued function.

We can think of a vector field as being like wind, or the flow of a fluid.

Other examples are forces due to gravity or magnetism.

EXAMPLE: $\mathbf{F}(x, y)=(-y, x)$ in \mathbb{R}^{2}.

What are some ways to generate a vector-valued function?

Remember gradients. If $f=f(x, y, z)$ is a scalar-valued function, then its gradient is defined as

$$
\nabla f=\left(f_{x}, f_{y}, f_{z}\right)
$$

which is a vector-valued function.

So, a vector field \mathbf{F} could be the gradient of some scalar-valued function f, but it doesn't have to be. If \mathbf{F} is the gradient of f, we call \mathbf{F} a gradient field and we call f a potential function for \mathbf{F}.

Line integrals

Line integrals of scalar-valued functions

Suppose $f=f(x, y, z)$ is a scalar-valued function (in 3D space).

Suppose C is a curve in space, parametrized by $(g(t), h(t), k(t))$.

Then we can define the line integral

$$
\int_{C} f(x, y, z) d s
$$

Informally, we're adding $f(x, y, z) d s$ where $d s$ is a small change in the length.

Notice that $d s$ is a scalar.

How do we evaluate a line integral?

Parametrize C as $\mathbf{r}(t)=(x, y, z)=(g(t), h(t), k(t))$ with $a \leq t \leq b$.

Then $d s=|\mathbf{v}(t)| d t=\left|\mathbf{r}^{\prime}(t)\right| d t$.
And then $\int_{C} f(x, y, z) d s=\int_{t=a}^{t=b} f(g(t), h(t), k(t))\left|\mathbf{r}^{\prime}(t)\right| d t$.

EXAMPLE: Evaluate the integral

$$
\int_{C}(x-y+z-2) d s
$$

where C is the straight line segment

$$
\begin{aligned}
& x=t \\
& y=1-t \\
& z=1
\end{aligned}
$$

from $(0,1,1)$ to $(1,0,1)$.

Line integral of a vector-valued function

Say \mathbf{F} is a vector field, and C is a curve parametrized by $\mathbf{r}(t)$ for $a \leq t \leq b$. Then the line integral of \mathbf{F} along C is

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{t=a}^{t=b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

(Notice we are taking the dot product of two vectors in the integral.)

If \mathbf{F} is a force field, then $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is the work done by the force \mathbf{F} along the curve C.
If \mathbf{F} is a velocity field, then $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is called the flow along the curve.
(If the curve starts and ends at the same point, the flow is called the circulation.)

EXAMPLES:

Here are two different paths from $(0,0,0)$ to $(1,1,1)$.
$C_{1}=$ the straight-line path $\mathbf{r}(t)=(t, t, t)$ where $0 \leq t \leq 1$
$C_{2}=$ the curved path $\mathbf{r}(t)=\left(t, t^{2}, t^{4}\right)$ where $0 \leq t \leq 1$

Find the line integral of \mathbf{F} along C_{1} and along C_{2}, if:

- $\mathbf{F}(x, y, z)=(3 y, 4 x, 2 z)$
- $\mathbf{F}(x, y, z)=(\sqrt{z},-2 x, \sqrt{y})$

Different ways to write a line integral of a vector field

If $\mathbf{F}=(f, g, h)$ and C is parametrized by $\mathbf{r}(t)=(x(t), y(t), z(t))$, then the line integral of \mathbf{F} along C can be written in the following ways:

$$
\int_{C} \mathbf{F} \cdot \mathbf{r}^{\prime}(t) d t=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} f d x+g d y+h d z
$$

We can also write

$$
\int_{C} \mathbf{F} \cdot \mathbf{r}^{\prime}(t) d t=\int_{C} \mathbf{F} \cdot \mathbf{T} d s
$$

To see this, recall that the unit tangent vector is $\mathbf{T}=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}$ and that we have $d s=\left|\mathbf{r}^{\prime}(t)\right| d t$, so $\mathbf{T} d s=\mathbf{r}^{\prime}(t) d t$.

Recall that the above integral is called the flow of \mathbf{F} along C.

If C is a smooth simple closed curve in the plane, then we can also define the integral

$$
\int_{C} \mathbf{F} \cdot \mathbf{n} d s
$$

where \mathbf{n} is the outward-pointing normal vector on C.

This integral is called the flux of \mathbf{F} across C.

FACT: If $\mathbf{F}=(M, N)$ and the curve C is traversed counterclockwise, then

$$
\int_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{C} M d y-N d x
$$

Why? This is explained in the textbook, but roughly summarized, it follows from $\mathbf{n}=\mathbf{T} \times \mathbf{k}$.

EXAMPLES:

Find the circulation and flux of the fields

$$
\mathbf{F}_{1}=x \mathbf{i}+y \mathbf{j} \quad \text { and } \quad \mathbf{F}_{2}=-y \mathbf{i}+x \mathbf{j}
$$

around and across each of the following curves.

- The circle $\mathbf{r}(t)=(\cos t) \mathbf{i}+(\sin t) \mathbf{j}, 0 \leq t \leq 2 \pi$
- The ellipse $\mathbf{r}(t)=(\cos t) \mathbf{i}+(4 \sin t) \mathbf{j}, 0 \leq t \leq 2 \pi$

Path independence and conservative fields

If \mathbf{F} is a vector field and $\mathbf{F}=\nabla f$ for some scalar-valued function f, then f is called a potential function for \mathbf{F}.

If \mathbf{F} has a potential function, then \mathbf{F} is called conservative.

FACT: Suppose C is a smooth curve from point A to point B, and suppose f is a potential function for \mathbf{F}. We then have

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(B)-f(A)
$$

In other words, if the vector field \mathbf{F} has a potential function, then the above integral is independent of path.

EXAMPLE: Which of the following vector fields are conservative? For those that are conservative, find a potential function.

$$
\begin{aligned}
& \mathbf{F}=(y z, x z, x y) \\
& \mathbf{F}=(y \sin z, x \sin z, x y \cos z) \\
& \mathbf{F}=(y, x+z,-y)
\end{aligned}
$$

EXAMPLE: Evaluate the integral by finding a potential function.

$$
\int_{(0,2,1)}^{(1, \pi / 2,2)} 2 \cos y d x+\left(\frac{1}{y}-2 x \sin y\right) d y+\frac{1}{z} d z
$$

A necessary and sufficient condition for $\mathbf{F}=(M, N, P)$ to be conservative:

$$
\frac{\partial P}{\partial y}=\frac{\partial N}{\partial z} \quad \text { and } \quad \frac{\partial M}{\partial z}=\frac{\partial P}{\partial x} \quad \text { and } \quad \frac{\partial N}{\partial x}=\frac{\partial M}{\partial y}
$$

