Part 8

Creating Graphs

Question 8.1. Consider the function $f(x)=x^{2}-4 x+3$.
(a) Find the domain and all x and y intercepts.
(b) Find the intervals where f is increasing and the intervals where f is decreasing. Identify each critical point as a local max, local min, or neither.
(c) Find the intervals where f is concave up and the intervals where f is concave down. Identify all inflection points.
(d) Combine parts (a), (b), and (c) to sketch the graph of f. Label all intercepts, extrema, and inflection points.

Question 8.2. Consider the function $f(x)=x^{3}-3 x+3$.
(a) Find the domain and all x and y intercepts.
(b) Find the intervals where f is increasing and the intervals where f is decreasing. Identify each critical point as a local max, local min, or neither.
(c) Find the intervals where f is concave up and the intervals where f is concave down. Identify all inflection points.
(d) Combine parts (a), (b), and (c) to sketch the graph of f. Label all intercepts, extrema, and inflection points.

Question 8.3. Consider the function $f(x)=x^{4}-2 x^{2}$.
(a) Find the domain and all x and y intercepts.
(b) Find the intervals where f is increasing and the intervals where f is decreasing. Identify each critical point as a local max, local min, or neither.
(c) Find the intervals where f is concave up and the intervals where f is concave down. Identify all inflection points.
(d) Combine parts (a), (b), and (c) to sketch the graph of f. Label all intercepts, extrema, and inflection points.

Question 8.4. Consider the function $f(x)=x+\sin x$.
(a) Find the domain and all x and y intercepts.
(b) Find the intervals where f is increasing and the intervals where f is decreasing. Identify each critical point as a local max, local min, or neither.
(c) Find the intervals where f is concave up and the intervals where f is concave down. Identify all inflection points.
(d) Combine parts (a), (b), and (c) to sketch the graph of f. Label all intercepts, extrema, and inflection points.

Question 8.5. Consider the function $f(x)=\sqrt{16-x^{2}}$.
(a) Find the domain and all x and y intercepts.
(b) Find the intervals where f is increasing and the intervals where f is decreasing. Identify each critical point as a local max, local min, or neither.
(c) Find the intervals where f is concave up and the intervals where f is concave down. Identify all inflection points.
(d) Combine parts (a), (b), and (c) to sketch the graph of f. Label all intercepts, extrema, and inflection points.

Question 8.6. Consider the function $f(x)=\ln \left(3-x^{2}\right)$.
(a) Find the domain and all x and y intercepts.
(b) Find the intervals where f is increasing and the intervals where f is decreasing. Identify each critical point as a local max, local min, or neither.
(c) Find the intervals where f is concave up and the intervals where f is concave down. Identify all inflection points.
(d) Combine parts (a), (b), and (c) to sketch the graph of f. Label all intercepts, extrema, and inflection points.

