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The three major types of sperm nuclear basic proteins (SNBPs), histone

(H type), protamine-like (PL type) and protamine (P type), are well

represented in vertebrates. The three groups are evolutionarily related

through a vertical evolutionary process (H → PL → P) that involves a

transition from lysine to arginine-rich proteins and results in a sporadic

but non-random distribution that can be phylogenetically traced. The

arginine-rich P type has been selected in the course of evolution of the

vertebrates, probably due to constraints imposed by internal fertilisation.

Protamines are subject to a positive Darwinian selection process that

results in the characteristic fast evolutionary rate shown by these proteins.

This makes their use very suitable for the reconstruction of phylogenies

of the different vertebrate groups. In mammals, two different types of

protamines (P1 and P2) are present which, in the course of the evolution

of this vertebrate group, have undergone a further transition to cysteine-

rich proteins which further enhanced their DNA packing efficiency. From

a functional perspective, protamines provide the most efficient packaging

of sperm chromatin and can probably influence the shape of the sperm

nucleus and chromatin stability, both of which have direct implications

for fertility. In mammals, alterations of the ratio between P1 and P2

protamines as well as the ratio between histones and protamines are

important determinants of sperm fertility. All of this suggests a potential

involvement of protamines in sperm competition which is discussed in

this paper.

“[Ramon y Cajal] would envisage the sperm-cells as activated by

a sort of passionate urge in their rivalry for penetration into the ovum cell.”

(Sherrington, 1949)
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Evolution of vertebrate sperm nuclear basic proteins

Chromatin, the complex of histones, non-histone proteins and DNA, is a dynamic structure.

The core subunit of chromatin, known as the nucleosome core particle, is composed of 146

base pairs of DNA wrapped around an octamer of core histones (H3, H4, H2A and H2B). A

linker histone (H1) protects an additional 20 base pairs to form the chromatosome (van Holde,

1988). Altering or remodeling of this structure is important for regulation of many nuclear

metabolic events such as, regulation of gene expression, DNA replication and DNA repair.

One of the most dramatic examples of chromatin remodeling occurs within male germ cells,

where changes in both the protein composition and compaction level of the chromatin take

place (Caron et al., 2005). During the postmeiotic maturation of sperm (spermiogenesis), chro-

matin becomes supercondensed and transcriptionally inert. High compaction of the sperm hap-

loid genome is needed to allow for a more hydrodynamic sperm head and may also protect the

DNA from physical and chemical damage (Braun, 2001).

The chromosomal proteins involved in the organization of the mature sperm chromatin are

generically known with the name of sperm nuclear basic proteins (SNBPs). They can be grouped

into three categories: protamine (P type), protamine-like (PL type) and histones (H type) (Ausió,

1995, 1999). All three types of SNBPs are structurally analogous and condense DNA into chro-

matin fibers of 300-500 Å (Casas et al., 1993), regardless of the structure of the individual

nucleoprotein complexes (Eirín-López et al., 2006a).

Organisms containing SNBPs of the P type are well represented amongst vertebrates and

have been found in all classes with the exception of Agnatha (see Fig. 1). In these organisms

the histones from the progenitor germ cells at the onset of spermatogenesis are replaced by

protamine in the late stages of spermiogenesis (Oliva and Dixon, 1991). In mammals, somatic

histones undergo post-translational modifications as well as replacement with specialised his-

tone variants during meiotic prophase [reviewed in Lewis et al. (2003a); Govin et al. (2004);

Kimmins and Sassone-Corsi (2005)].  Immediately after meiosis, histones are replaced by tran-

sition proteins (TNPs) (Meistrich et al., 1978, 2003), which are unique to mammals. During

spermiogenesis, the transition proteins are replaced by protamines, which vary greatly in amino

acid sequence, but are all small and have a very high arginine content, which is often much

greater than 30%. The high charge density of these arginine-rich proteins allows them to bind

DNA with high affinity and to more efficiently shield the charges on the DNA phosphate

backbone, compared to somatic histones, resulting in maximal compaction of the genome.

Many mammalian protamines have cysteine residues which are involved in disulfide crosslinking

that further contributes to the compaction of chromatin fibers (Lewis et al., 2003b).

Some amphibians and fish have structurally intermediate protamine-like proteins in their

sperm (PL type) (Fig. 1). These are highly heterogeneous but generally have a high combined

arginine + lysine content (35-50%) and are closely related to histone H1 (Ausió, 1995, 1999).

Alternatively, some amphibians and fish retain histones in their mature sperm (H type). Often

sperm-specific histone variants of either linker histones or core histones or both are present in

these instances. For example, frogs of the genus Rana have sperm containing sperm-specific

histone H1s, which have higher lysine contents than the Rana somatic H1s, as well as a full

somatic type histone complement (Itoh, Ausió and Katagiri, 1997).

From the examination of SNBPs from many invertebrates and vertebrates it was proposed

that SNBPs had undergone a vertical evolution H → PL → P (Saperas et al., 1994; Ausió, 1995,

1999).  Although a link between PL proteins and linker histone H1 had been proposed (Ausió,

1995, 1999), it remained unclear how a high lysine content, which is characteristic of the

members of the histone H1 family, could have given rise to arginine rich PL and P proteins.
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Figure 1. Cladogram of the subphylum Vertebrata showing the currently accepted rela-

tionships of monophyletic groups making up the subphylum. Each branch represents a

monophyletic group. The arrow shown on the right hand side depicts the direction and

approximate distribution of the three main types of SNBPs (in different colours) during the

course of evolution of this group.  H: histone type; PL: protamine-like type; P: protamine

type. It has been proposed that protamines (P type) may have evolved from a histone H1-

related protein as indicated at the base of the large arrow (Ausió, 1999; Lewis et al., 2004;

Eirin-Lopez et al., 2006).

 Two recent studies have shed light on the possible mechanisms underlying this change, lend-

ing direct support for a link between H1s, PLs, and protamines (Lewis et al., 2004; Eirín-López

et al., 2006b).  In the first study, examination of the SNBPs of two closely related species of

tunicates, Styela montereyensis and Ciona intestinalis, revealed the presence of proteins of

the PL type in their sperm (Lewis et al., 2004). However, while in S. montereyensis the PLs

were arginine rich, in C. intestinalis the PLs were lysine-rich. Detailed analyses of the coding

nucleotide sequences suggested that a single frameshift mutation may have allowed lysine-rich

clusters in the C-terminal tail of C. intestinalis to convert to arginine-rich clusters in S.

montereyensis, establishing the evolutionary link between PL and protamine type SNBPs (Lewis

et al., 2004). A second report, focused on the evolutionary relationships shown by members of
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the histone H1 family and the SNBPs of the PL type, revealed the presence of a common origin

for both groups of proteins (Eirín-López et al., 2006b). In this regard, it now seems clear that H1

histones and PLs are descendants of an ancient group of ‘orphon’ H1 replication-dependent

histones, which were excluded to solitary genomic regions of the genome as early in metazoan

evolution as before the differentiation of bilaterians. This ‘orphon’ lineage was ultimately re-

sponsible for the origin of the replication-independent somatic H1 lineage (as histone H5 and

H1º), as well as SNBP lineage. Both of these lineages were subject to a purifying process, that

shifted towards adaptive selection in the case of the SNBP lineage at the time of the lysine to

arginine transition (Eirín-López et al., 2006b). Due to the more efficient DNA condensation

properties of arginine (Puigdoménech et al., 1976; Hélène and Lancelot, 1982; Ausió et al.,

1984), proteins with a high global content of this amino acid would have been positively

selected for during the course of evolution.

The evolution of SNBPs through a H → PL → P process involving a primordial replication

independent histone H1 (Ausió, 1995, 1999; Eirín-López et al., 2006a; Eirín-López et al.,

2006b) lends support to the old concept of a potential relationship between ontogeny and

phylogeny (Bloch, 1976; Ausió, 1995, 1999). Indeed, during mammalian spermiogenesis a

gradual transition in the composition of chromosomal proteins is observed that involves highly

specialized H1 histones [H1t (Seyedin and Kistler, 1980), HILS1 (Iguchi et al., 2003; Yan et

al., 2003), Hanp1/H1T2 (Martianov et al., 2005; Tanaka et al., 2005)] that precede and/or

coexist with TNPs (Meistrich, 1989; Meistrich et al., 2003) which are ultimately replaced by

protamines (Lewis et al., 2003b) in the mature spermatozoa.

The different SNBP types display a heterogeneous distribution across the different vertebrate

groups (Fig. 1). Nevertheless, as it was shown in fish, the sporadic appearance of the different

types is not random and follows the vertical evolutionary phylogeny of the groups where these

proteins are present (Saperas et al., 1994). As can be seen from Figure 1, the occurrence of

protamines is seen in vertebrates as ancient as sharks and other cartilaginous fishes. Agnatha,

which are a superclass of primitive jawless fish (lamprey and hagfish) have sperm that only

contain histones and thus are of the H type (Saperas et al., 1994, 1997). In contrast, all the

species examined within the class Chondrichthyes (cartilaginous fish), which includes the sharks,

skates and rays, are of the P type. Within the subclass Actinopterygii, or ray-finned fish, repre-

sentatives from all SNBP types are present (Chiva, 1995).  The examined sturgeons and paddle

fish which are within the subclass Chondrostei contain protamines, whereas the teleost fish or

bony fish (the largest group of living fish) are more diverse containing organisms of the H, PL

and P types, even though they are all within the subclass Sarcopterygii. A similar sporadic

SNBP distribution  is seen within the class Amphibia (Kasinsky, 1989). It is apparent from the

analysis of the SNBP composition of both fishes and amphibians that a lysine to arginine transi-

tion (or divergence from H type to PL type to P type) likely occurred multiple times in the

course of their evolution. It has been suggested that the driving force behind this evolution in

fish and amphibians may be differing constraints placed on the sperm by internal versus exter-

nal fertilisation (Kasinsky, 1989, 1995). There is a correlation that suggests that the harsh and

viscous environment that sperm are subjected to within female reproductive tracts during inter-

nal fertilisation may select for protamines (Mann et al., 1982; Kasinsky et al., 1985; Kasinsky,

1989, 1995).

Following the appearance of Amniota, all organisms contain protamines in their sperm (P

type) (Fig. 1). This may suggest an evolutionary trend towards the use of protamines to package

sperm DNA in ‘higher’ vertebrate organisms. The replacement of histones with protamines is

typical of taxa located at the uppermost tips of evolutionary branches (Ausió, 1999). In mam-

mals, two types of protamines have been identified: protamine P1 and the protamine P2 fam-

ily. For the P2 family, proteolytic cleavage of the N-terminus of the P2 precursor protein yields
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the form of the protein that is present in the mature sperm (Sautiere et al., 1988; Hecht, 1989;

Lewis et al., 2003b). Although P1 has been found in all species studied, P2 is exclusively

expressed in only a few eutherian organisms, including human and mouse (Oliva, 2006; and

references therein). An additional compositional transition in the course of vertebrate SNBP

evolution took place in mammals where some of their protamines became rich in cysteine

(Oliva and Dixon, 1991; Lewis et al., 2003b). This residue is absent from metatherian prota-

mines and is uncommon in other chromosomal proteins (van Holde, 1988). Cysteine first ap-

pears in the protamines of placental (eutherian) mammals and it is well established in both the

P1 and P2 protamine lineages. Cysteine also appeared later in the marsupial  P1 protamines of

the genus Planigales through a process of convergent evolution (Retief et al., 1995a). The

acquisition of cysteine, which can form inter- and intramolecular disulfide bonds (Vilfan et al.,

2004), adds stability and increases the compaction of the nucleoprotamine complexes. The

lysine to arginine conversion in the transition from H to PL SNBPs and the acquisition of

cysteine by the P type during the course of evolution of vertebrate SNBPs is highly reminiscent

of the similar compositional transitions that have been observed in the equivalent invertebrate

SNBP types (Lewis et al., 2003b).

The importance of being a protamine and the evolution of vertebrate protamines

Despite the continued effort to characterise protamines from different representative groups of

vertebrates, there is still an important lack of information on these proteins. Although prota-

mines appear to be compositionally simple proteins (small and arginine rich), the amino acid

distribution in the primary structure of protamines does not seem to be random. In fact, as it will

be described in the following sections, the amino acid sequences of these proteins appear to be

critical for their function and can be used to trace their evolution.

Protamines exhibit a large structural heterogeneity, as can be seen from the large extent of

variation observed in their electrophoretic mobility and primary structure (Fig. 2). Despite this

diversity, their amino acid sequence stores very valuable phylogenetic information (Oliva,

1995; Lewis et al., 2003b). Figure 2A provides an electrophoretic analysis of protamines of

representative organisms from different vertebrate groups (see Fig. 1) and Figure 2B outlines

their corresponding amino acid sequences. We have shown in the past that it is possible to use

this kind of sequence information to produce phylogenetic trees that closely resemble those

obtained using other molecular markers and/or those based on paleontological/anatomical traits

(Lewis et al., 2003b). For instance, we were able to generate a phylogeny for the closely

related species of sticklebacks that was indistinguishable from that generated from morphologi-

cal and behavioural analysis of this group of Gasterosteoidei fish (Giménez-Bonafé et al.,

2000). Using a broader range of teleost fish species, for which there is a relatively abundant

amount of sequence information for protamines, it was possible to reconstruct a phylogenetic

tree which was almost identical to that currently available from the use of conventional markers

(Frehlick et al., 2006b). The protamine sequence information has also been useful in confirm-

ing the close relationship between birds and reptiles (Sauropsida) (Hunt et al., 1996; Ausió et

al., 1999) and has additionally provided support to the monophyletic origin of Paleognathae

birds (ostriches, emus, tinamou) (Ausió et al., 1999). Similar phylogenetic results have been

obtained with different groups of mammals (also see below) (Retief et al., 1993; Queralt et al.,

1995; Retief et al., 1995c).

The fidelity with which protamines work as phylogenetic markers is primarily due to the

rapid evolution of these proteins (Oliva and Dixon, 1991; Oliva, 1995; Lewis et al., 2003b), a

trait they share with other reproductive proteins (Swanson and Vacquier, 2002). This fast evolu-
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Figure 2. (A) Acetic acid-urea polyacrylamide gel electrophoresis (AU-PAGE) of protamines from several

representative species of the main monophyletic groups of the subphylum Vertebrata shown in Figure 1.

Al: Alligator mississipiensis (alligator); Bm: Bufo marinus (cane toad); Gll: Gallus gallus (rooster); Hm:

Homo sapiens (human); Lz : Anolis carolinensis (green anole, lizard); Os: Struthio camelus (ostrich);  SL

Oncorhyinchus keta  (chum salmon, salmine); Sm: Sminthopsis crassicaudata (fat-tailed dunnart); Tt:

Chrysemys picta  (painted turtle). H: histones; P: protamines.  Amino acids are colour-coded according to

their side-chain properties: Blue, basic; green, polar uncharged; pink, non-polar hydrophobic; red, acid.

(B) Amino acid sequences of the protamines from the species shown in (A). The sequences have been

aligned using the BIOEDIT (Hall, 1999) and CLUSTAL_X (Thompson et al., 1997) programs. (C) Phyloge-

netic relationships between different mammalian chromosomal sperm proteins (P: protamines; TNP:

transition proteins; PL: protamine-like proteins). The amino acid sequences were aligned as in B and the

phylogenetic tree derived from this alignment was constructed as described elsewhere (Eirin-Lopez et al.,

2006). Numbers for the interior branches represent the BS (bootstrap probability) values followed by the

CP (confidence probability, internal-branch test) values based on 1000 replications and are only shown

when their value is higher than 50 % (Eirin-Lopez et al., 2006).
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tion has been ascribed to positive Darwinian selection (Rooney and Zhang, 1999; Clark and

Civetta, 2000; Wyckoff et al., 2000; Swanson and Vacquier, 2002) and involves an unusual

form of purifying selection that is responsible for maintaining the overall high arginine compo-

sition of these proteins regardless of the specific position of the residues in the molecule

(Rooney et al., 2000).

We have taken advantage of all this and revisited here (Fig. 2C) the phylogenetic analysis of

mammals using the SNBP sequence information available to date for this vertebrate group. The

phylogenetic relationships between mammalian protamines and transition proteins bear an

enormous resemblance to those obtained for these proteins when analysed within a broader

phylogenetic tree that included SNBPs from all types belonging to both deuterostome and

protostome organisms (Eirín-López et al., 2006c). Accordingly, mammalian protamine P3 en-

coded by the PRM3/GENE4 gene of the human protamine locus (Nelson and Krawetz, 1994;

Kramer and Krawetz, 1998) appears to be  more closely related to invertebrate PL proteins than

to any other protamines (including mammalian P1 and P2 protamines encoded by PRM1/PRM2

genes) (Eirín-López et al., 2006b), a fact that could be taken as indicative of the more primitive

origin of this mammalian protamine type. As pointed out by Oliva (2006) the name protamine

for the protein encoded by PRM3 may be misleading as it contains a large amount of glutamic

acid which is uncharacteristic of a DNA binding protein. Interestingly however, the phyloge-

netic analysis suggests that a P3 ancestor may have been the precursor of mammalian TNP and

P1 and P2 protamines (see Fig. 2C), in contrast to earlier propositions which suggested that

PRM3 was derived from PRM1 (Kramer and Krawetz, 1998). It is then not surprising that, PRM3

(Schluter and Engel, 1995; Schluter et al., 1996; Kramer and Krawetz, 1998) and the PRM1,

PRM2  and TNP2 genes are found in the same vicinity within the same protamine locus (Nelson

and Krawetz, 1993).

As can be seen in Figure 2C, the analysis not only provides useful information about the

potential evolutionary links between the SNBPs of mammals but their protamines  (Oliva,

1995), in particular protamine P1, accurately define the phylogeny of the group. The Metatheria

(Marsupialia) (Retief et al., 1995a,b), Prototheria (Monotremata) (Retief et al., 1993) and Eutheria

(Oliva, 1995; Queralt et al., 1995) appear well defined, thus providing yet another example of

the usefulness of protamines as highly reliable phylogenetic markers.

In addition to all this, the tree shown in Figure 2C also suggests that transition proteins arose

earlier in evolution than mammalian P1/P2 protamines and that P1 and P2 are closely related,

with the slightly more recent appearance of the P2 type likely arising by gene duplication of a

P1 precursor (Krawetz and Dixon, 1988). The evolutionary path followed by these mammalian

SNBPs is reminiscent of the sequential order in which these proteins appear during spermatoge-

nesis. Together with the close relation of TNPs to invertebrate PLs (Eirín-López et al., 2006c)

all this lends additional support to the notion of a relationship between the ontogeny and

phylogeny of the three main SNBP types (Bloch, 1976; Ausió, 1995, 1999).

Do SNBPs affect sperm shape?

Amphibians provide an excellent system for a first approximation to the answer of this question

as this vertebrate group contain species that are representative of each of the three main SNBP

types (Frehlick et al., 2006a) (Fig. 3).

A few preliminary considerations about chromatin organization need to be introduced here

before further discussion on the topic. The association of histones, PL proteins and protamines

with DNA results in nucleoprotein complexes with a fiber-like organization of 300-500 Å (van

Holde, 1988; Casas et al., 1993; Saperas et al., 2006) that is ultimately determined by an
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overall energy minimization of the complex and not by the specific nature of the protein–DNA

interactions described next (Subirana, 1992). In the H type, such as in Rana, the chromatin is

organised in a 300 Å fiber consisting of approximately six nucleosomes per turn (see Fig. 3D,

H). In contrast, the invertebrate (Ausió and Subirana, 1982) and vertebrate (Saperas et al., 2006)

PL  type chromatin consists of irregular parallel DNA bundles. In mammalian protamines,

chromatin loops are organised in toroidal structures containing similar parallel nucleoprotamine

bundles (Hud et al., 1995; Ward and Zalensky, 1996; Balhorn, 1999; Brewer et al., 1999) (see

Fig. 3D PL/P).

Figure 3. Scanning electron microscopy micrographs of the sperm heads (lanes 1) and

AU-PAGE analysis of the SNBPs (lanes 2) of three different species of amphibians: (A) R.

catesbeiana (bullfrog); (B) X. laevis (African clawed frog); (C) B. marinus (Cane toad). AUA:

axoneme-undulating membrane-axial rod; H: head, MP: midpiece and S: single flagellum

only with axoneme. (D) Schematic representation of a 100 Å cross-section of a 300 Å fiber

of a histone-containing (H) or a P/PL-containing sperm chromatin fiber (see text for more

details).

With the structural information currently available for these different types of chromatin organiza-

tions, it is possible to theoretically calculate the extent of DNA compaction achieved by each of

them (see Fig. 3D). If we consider a 110 Å thick section and the DNA retains its B conformation

(Ausió and Subirana, 1982; van Holde, 1988) with an average raise of 3.4 Å per base pair, it is

possible to fit 100 nucleoprotein (P/PL) bundles (of approximately 30 Å in diameter) into a PL/P

chromatin fiber with a 300 Å diameter. If the DNA was fully stretched this would amount to

approximately (100 / 3.4) x 100 (complexes) = 2900 base pairs of DNA compacted within this

cross section. In the H type, chromatin is organized in discrete subunits (nucleosomes) each con-

sisting of approximately 210 base pairs of DNA. In the presence of histone H1, the nucleosome
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arrays can fold into a higher order structure consisting of approximately 6 nucleosomes per turn and

a 300 Å diameter. Since the nucleosome is approximately 100 Å tall, this implies that about 1300

base pairs of DNA are compacted within a 100 Å by 300 Å section. Thus, the PL/P– DNA com-

plexes can compact DNA about twice (2.2) as densely as the complexes of the H type.

We have used several scanning electron microscopy (SEM) pictures of Rana catesbeiana (H

type), Xenopus laevis (PL type) and Bufo marinus (P type) sperm whose haploid C-value ranges

are: 6.63-9.00, 3.00-3.85 and 3.98-5.65 picograms respectively (Gregory, 2006) to calculate the

approximate sperm head volume/C-value ratios (v/C) and in doing so we observed  that both X.

laevis and B. marinus apparently exhibit the same v/C ratio, whereas the v/C ratio is approxi-

mately 1.7 times larger in R. catesbeiana (Fig. 3A-C). This higher value for the H type chromatin

is in good agreement with the value theoretically calculated from the corresponding chromatin

conformations, although it is a bit lower (1.7 vs. 2.2). The lower than expected compaction value

could be attributed to the fact that the 300 Å nucleosomally organised chromatin fibers (Fig. 3 D,

H) can interdigitate to some extent (Daban, 2003; Robinson et al., 2006) increasing the theoreti-

cally calculated value.

While all this does not answer completely the question raised at the beginning of this section,

it does demonstrate that, in general, histones are less efficient in packaging sperm chromatin than

P and PL proteins. In addition to better compacting the sperm chromatin P and PL proteins erase the

epigenetic contribution of histones (Caron et al., 2005; Rousseaux et al., 2005). These are most

likely two of the important reasons why these protein types, especially protamines, have been

selected throughout evolution (see Fig.1). In terms of sperm head shape it is difficult from just the

three amphibian examples shown in Figure 3 to make any predictions other than the observation

that while PL/P types seem to lead to more conical streamlined head shapes (Fig. 3 B,C), histones

appear to result in rounder shapes (Fig. 3A). The morphology of the sperm head for those organisms

containing exclusively protamines can be extremely heterogeneous across different taxa (Baccetti

and Afzelius, 1976; Oliva and Dixon, 1991) and no SNBP-related rule appears to exist other than

the previous generalization for H versus PL/P type.

It is very likely that SNBPs are not the sole determinants of the sperm nuclear shape. Mouse

sperm co-expressing different amounts of a heterologous rooster protamine does not exhibit

significant changes in its gross morphology (Maleszewski et al., 1998). It has been shown that

SNBP composition and  regulation of the contraction of the perinuclear microtubule matrix may

have co-evolved to produce the highly unique structural characteristics of the sperm nucleus

and head, such as occurs with the cysteine-rich protamines of the nucleus of the sperm of the

marine octopod Eledone cirrhosa (Giménez-Bonafé et al., 2002). A synergistic effect between

multiple protein components would explain the enormous sperm head shape diversity, when

compared to the three main groups of SNBPs. However, at the level of closely related species

or taxa is possible that protamines and their relative composition (when several molecular

species are present, as is the case in mammals) may result in alterations of the overall sperm

architecture, as has been observed in protamine deficient human spermatozoa (Blanchard et

al., 1990) and in protamine 2 deficient mice (Cho et al., 2003). As the shape of the head may

play an important role in sperm competition (Roldan, Gomendio and Vitullo, 1992) it would be

worth analyzing the protamine composition of closely related species in relation to the sperm

head morphology to determine the existence of any potential correlation.

Mammalian SNBPs and infertility

The multiplicity of SNBPs involved in mammalian spermiogenesis [H1t (Seyedin and Kistler,

1980), HILS1 (Iguchi et al., 2003; Yan et al., 2003), Hanp1/H1T2 (Martianov et al., 2005;

05-Ausio.p65 3/20/2007, 11:03 AM71



72 J. Ausió et al.

Tanaka et al., 2005), TNPs (Meistrich, 1989; Meistrich et al., 2003) and P1/P2  protamines

(Lewis et al., 2003b)] suggests that alterations in any of these proteins could affect male fertil-

ity.  In this regard, homozygous Hanp1/H1T2 disrupted male mice are infertile (Tanaka et al.,

2005), Tnp1/Tnp2 deficient mice exhibit an altered chromatin structure and reduced fertility

(Yu et al., 2000; Zhao et al., 2001; Zhao et al., 2004) and haplo-insufficiency of P1 or P2 causes

infertility in the same organism (Cho et al., 2001, 2003). In the last example, the effect is

system-dependent as bull and boar lack protamine P2 as a result of mutations on this gene

(Maier et al., 1990) and, in contrast to mice, P2 expression is suppressed in rats (Bunick et al.,

1990).

The role of vertebrate SNBPs and protamines in male infertility has been the subject of two

recent extensive reviews (Nishimune and Tanaka, 2006; Oliva, 2006). In humans, which retain

some (ca. 15%) sperm-specific residual histones in the mature sperm (Gatewood et al., 1987;

Wykes and Krawetz, 2003; Churikov et al., 2004), three main types of alterations that have

been described so far which can affect fertility are: altered histone/protamine ratio, altered P1/

P2 ratio and mutated P1or P2 (Fig. 4 A, B).

Alterations in the relative amount of histones with respect to the protamine content can alter

the sperm morphology (Blanchard et al., 1990) and have been described in infertile men

(Hofmann and Hilscher, 1991; Foresta et al., 1992; de Yebra et al., 1993; Carrell and Liu, 2001;

Zhang et al., 2006). Although this type of protein imbalance is usually related to protamine

deficiency (Zhang et al., 2006), in some instances it may alternatively be the result of an

incomplete replacement of histones during spermiogenesis (Oliva, 2006), as is observed in

males with antecedents of cryptorchidism (Fernandez Valades et al., 2001).

An increase in the P1/P2 ratios as a source of infertility has long been recognized (Chevaillier

et al., 1987; Balhorn et al., 1988; Bach et al., 1990; Blanchard et al., 1990; Belokopytova et

al., 1993; de Yebra et al., 1993; Bench et al., 1998; de Yebra et al., 1998; Mengual et al.,

2003; Aoki et al., 2005). Interestingly, an increased level of P2 precursors has also been de-

scribed, suggesting a potential role of protamine processing in infertility (Bench et al., 1998;

de Yebra et al., 1998; Torregrosa et al., 2006).

The potential role of SNBP mutations in infertility has been recently reviewed (Nishimune

and Tanaka, 2006). Although this does not appear to be a common source of the problem, a few

mutations have been described in both the PRM1 and PRM2 genes of infertile males. A single

nucleotide polymorphism (SNP) (c248t) in the PRM2 gene that results in early mRNA termina-

tion has been detected in an infertile patient that presumably results in haplo-insufficiency of

P2 and is responsible for infertility (Tanaka et al., 2003). More recently, an amino acid transi-

tion from R to S at position 34 of human P1 (see Fig. 4B) in a group of infertile patients has been

described (Iguchi et al., 2006). This mutation was shown to be the result of a heterozygous

single nucleotide polymorphism and there are reasons to believe that it may be involved in

infertility. The replacement of arginine by a serine in the context of the region of P1 where the

transition takes place is interesting as it generates an RSR motif amenable to phosphorylation

by SR-protein-specific kinase 1 (Papoutsopoulou et al., 1999). Phosphorylation of the repetitive

N-terminal “RS” domains and of protamine serine residues in general has been shown to play a

critical role in the proper interaction and deposition of these proteins onto DNA (Bode et al.,

1977; also see Oliva and Dixon, 1991, and Raukas and Mikelsaar, 1999, for reviews) and hence

are important for the proper organization of sperm chromatin. Thus, the appearance of an new

internal serine in P1 could potentially have a very disruptive effect. In this regard, and as shown

in Figure 4B, phosphorylation of S(34) introduces two negative charges that have the potential

to neutralise the adjacent positive charge of the surrounding R(33)/R(35) leading to  a signifi-

cant modification of the protamine-DNA interaction and/or to changes in the local secondary
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structure of the protein, both of which can result in an anomalous chromatin organization.

Alterations of sperm chromatin structure have the potential to lead to infertility and altered

binding of protamines to DNA may affect the proper formation of a male pronucleus after

fertilisation.

Figure 4. (A) Transitions in SNBPs can affect sperm morphology (shape) and chromatin

instability, affecting fertility. Schematically shown is a representation of mouse sperm heads of

the wild type (wt) or exhibiting an altered shape (as) resulting from a protamine 2 deficiency

(Cho et al., 2003) [redrawn from pictures shown in Fig. 2 from Cho et al. (2003)]. In conjunc-

tion with other cellular changes it is possible that the SNBP-mediated conformational changes

may have a significant effect on sperm mobility (in this representation X indicates reduced

mobility) which may play an important role in sperm competition (see text for a detailed

discussion). H: histones; N: nucleus, P: protamines; TNP: transition proteins. (B) A recently

discovered single nucleotide polymorphism leads to an amino acid transition (R to S) at

position 34 of human protamine 1 and may participate in infertility (Iguchi et al., 2006).

Can protamines play a role in sperm competition?

Support for the notion that protamines may have a role in sperm competition comes from

evolutionary studies carried out with these proteins. It has been proposed that the positive

Darwinian selection of protamine P1 in primates may have been driven by sperm competition

(Rooney and Zhang, 1999; Wyckoff et al., 2000; Swanson and Vacquier, 2002). However, the

structural determinants involved in the process are not known. If protamines can have some direct

or indirect effect on sperm shape and chromatin stability (Fig. 4A), altering the overall mobility
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and having implications for infertility (Cho et al., 2003), the exciting possibility exists that prota-

mines may also play a role in sperm competition (Fig. 4A). It has also been shown that expression

of a heterologous avian protamine from rooster in transgenic mice (Rhim et al., 1995) resulted in

reduced mobility and lower fertility (Maleszewski et al., 1998). Therefore, it appears that prota-

mines may have a significant effect in sperm competition, however further research in this area is

still needed.

Recent work with Iberian red deer (Cervus elaphus hispanicus) has shown that the hydrody-

namic shape of the sperm head in conjunction with the force generated by the flagellum play a

critical role in determining sperm swimming velocity (Malo et al., 2006). Also, a unique morpho-

logical conformation has been described for the falciform head of the wood mouse (Apodemus

sylvaticus) sperm which results in sperm cooperation where distinctive aggregations of genetically

related sperm results in the increase of the sperm’s progressive motility (Moore et al., 2002). As

sperm swimming velocity and motility are very important determinants of male fertilisation suc-

cess (Birkhead et al., 1999; Froman et al., 1999; Levitan, 2000; Gage et al., 2004) the shape of the

sperm head may be a component in sperm competition (Roldan et al., 1992). In this hypothetical

setting the influence of the protamine P1/P2 composition in the shape of the mice sperm heads is

quite revealing and lends further support to the notion that protamines may play a role in sperm

competition (Fig. 4A).

It has been pointed out that sperm competition is a potent evolutionary force among mammals

(Roldan et al., 1992) which influences sperm morphology (Gomendio and Roldan, 1991). It could

be that the selection for protamines in the course of SNBP evolution was not exclusively deter-

mined by the transition from external to internal fertilisation but may have also been influenced by

sperm competition.

Concluding remarks

The rapid evolution of sperm proteins, in particular protamines, is allowing us to observe the

evolution of proteins at its best. The transition from the H type to the P type in the course of

evolution may have ultimately been driven by the enhanced ability of these proteins to com-

pact the genome, while efficiently erasing the epigenetic histone component inherited from

the stem cells at the onset of spermatogenesis.

In general, the sperm head shape appears to be highly variable and independent of the SNBP

composition. However, protamines and PL proteins compact DNA much more efficiently and

the possibility exists that protamine variation may affect the shape of the sperm head in rela-

tively closely related species and hence have a role in fertility and even perhaps in sperm

competition.  Increased chromatin compaction by protamines decreases the volume and stream-

lines the shape of the sperm head, providing better protection against externally damaging

agents and enhancing sperm mobility. Ultimately, differences in sperm swimming velocity in

internally fertilising organisms are an important component of sperm competition. Also, there

is now a significant amount of accumulated data that indicates that protamines play an impor-

tant direct role in fertility. This involvement suggests again that the SNBP transitions respon-

sible may also affect sperm competition.

In closing, we would like to go back to Sherrington’s quote at the beginning of this chapter

on Cajal’s anthropomorphic views of cell systems (Sherrington, 1949). Evolution of SNBPs

together with other male reproductive proteins appears to have an important role in optimizing

the cell parameters that allow sperm to accomplish its “passionate urge” (fertility) and success-

ful “rivalry” (competition). This later issue, sperm competition, is an important selective force

whose role in the evolution of SNBPs has yet to be explored.
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