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Abstract The study of histone evolution has experienced a

rebirth, for two main reasons: the identification of new

essential histone variants responsible for regulating chro-

matin dynamics and the subsequent contradictions posed by

this variability as it pertains to their long-term evolution

process. Although different evolutionary models (e.g., birth-

and-death evolution, concerted evolution) may account for

the observed divergence of histone genes, conclusive evi-

dence is lacking (e.g., histone H1) or totally nonexistent

(e.g., histone H2A). While most of the published work has

focused on deuterostomes, very little is known about the

diversification and functional differentiation mechanisms

followed by histone protein subtypes in protostomes, for

which histone variants have only been recently described. In

this study, we identify linker and core histone genes in three

clam species. Our results demonstrate the prevalence of an

‘orphon’ H1 lineage in molluscs, a group in which the pro-

tostome H1 and sperm nuclear basic proteins are on the verge

of diversification. They share an early monophyletic origin

with vertebrate-specific variants prior to the differentiation

between protostomes and deuterostomes. Given the intrin-

guing evolutionary features of the histone H1 family, we

have evaluated the relative importance of gene conversion,

point mutation, and selection in maintaining the diversity

found among H2A subtypes in eukaryotes. We show evi-

dence for the first time that the long-term evolution of this

family is not subject to concerted evolution but, rather, to a

gradual evolution following a birth-and-death model under a

strong purifying selection at the protein level.
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Introduction

Histones constitute a group of small basic proteins involved

in the packaging of DNA in the eukaryotic nucleus and,

consequently, in the regulation of gene expression also.

There are five histone families, which can be classified into

two major groups according to structural and functional

features: core histones (H2A, H2B, H3, and H4) and linker

histones (H1). Histones can also be classified according to

their expression patterns as either replication dependent

(RD) or replication independent (RI). In the first case, RD

histones show an expression pattern coupled to the S-phase

of the cell cycle during DNA replication, which is mediated

by the presence of a stem-loop sequence in their mRNAs. In

contrast, RI histones are transcribed through polyadenylated

mRNAs, facilitating their prevalence at basal and constant

levels throughout the cell cycle (Marzluff 1992). However,

there are several examples of histone genes in which both

mRNA termination signals coexist, sometimes referred to

as facultative histone genes that can be expressed through

either mechanism (Cheng et al. 1989; Collart et al. 1992;

Gendron et al. 1998).

Histones show a typical tripartite structure, composed

of a central globular domain flanked by two terminal tails
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(N- and C-terminal). The globular domain contains a con-

served region known as the histone fold in core histones or

the winged-helix domain in linker histones (Arents and

Moudrianakis 1995; Ramakrishnan et al. 1993). While the

N-terminal tail contains the vast majority of residues ame-

nable for posttranslational modification in core histones, the

long C-terminal tail is the most important domain in linker

histones, playing a role in nucleosome positioning and in

the regulation of gene expression (Wolffe et al. 1997). The

association of core histones results in the formation of the

octamer, which interacts with DNA to form the nucleosome

core particle, which represents the fundamental subunit of

the chromatin fiber (van Holde 1988). Linker histones are

involved in the compaction of the chromatin fiber by

interacting with internucleosomal DNA stretches (Simpson

1978) and participating in the formation of higher order

chromatin structures.

Among the five histone families, the H1 and H2A

families show the greatest diversity of isoforms. In the case

of H1, several variants exclusive of vertebrates have been

identified, including somatic, spermatogenesis, oocyte,

maternal, and replacement-specific subtypes (Albig et al.

1997; Cho and Wolffe 1994; Martianov et al. 2005; Yan

et al. 2003). However, fewer H1 isoforms are observed in

invertebrates, including somatic and stage-specific sub-

types (Hentschel and Birnstiel 1981; Maxson et al. 1983).

The H2A family contains the greatest number of variants

among the core histones. Examples of H2A variants

include H2A.X, H2A.Z, H2A.Bbd (Barr body deficient),

and macroH2A, some of which are essential for the

maintenance of genome integrity and viability (Dryhurst

et al. 2004; Eirı́n-López and Ausió 2007; Li et al. 2005).

Such variants additionally play critical roles in the regu-

lation of chromatin dynamics (Ausió 2006; Chadwick and

Willard 2001a, b; Eirı́n-López et al. 2007).

The long-term evolution of histones has been classically

explained by a concerted evolution model, which accounts

for the homogenization of the family members through

interlocus recombination or gene conversion. However,

recent works have demonstrated a high degree of variation

and diversification in histone genes, suggesting that histone

family members have evolved gradually through a series of

small steps subject to a duplication/selection mechanism

defined as birth-and-death (Eirı́n-López et al. 2004a; Nei

and Hughes 1992; Nei and Rooney 2006; Piontkivska et al.

2002; Rooney et al. 2002). Even though the H1 and H2A

families are the best-characterized histones and there is

support for the gradual evolution of H1 (Eirı́n-López et al.

2004a, 2005), the specific evolutionary mechanisms acting

on H2A histones are unknown.

Among the different model organisms used in the study

of histones, bivalve molluscs are of special interest, as they

represent the only protostome group having RI H1 lineages

and that are linked to the origin of sperm nuclear basic

proteins (SNBPs; Eirı́n-López et al. 2006a, b). In the

interest of investigating the origin and evolution of this

gene lineage, we have characterized the histone multigene

family in three clam species belonging to the family

Veneridae (Ruditapes philippinarum, Venerupis decussa-

tus, and Venerupis pullastra). Our results indicate the

presence of an ‘orphon’ RI H1 lineage that is not exclusive

to mussels, but common to other bivalve species. This

finding supports the evolutionary differentiation among

SNBPs and RI and RD H1 genes as early as in metazoan

evolution before the split between protostomes and deut-

erostomes. Furthermore, this work presents evidence in

favor of the gradual evolution of H2A histones following a

birth-and-death model of evolution under a strong purify-

ing selection at the protein level.

Materials and Methods

Isolation of Histone Genes, Analyses of Transcripts,

and Protein Extraction

The three clam species analyzed in the present work were

collected in different localities along the Atlantic coast of

Spain as follows: Ruditapes philippinarum and Venerupis

decussatus from Camariñas (A Coruña) and Venerupis

pullastra from Pontedeume (A Coruña). Genomic DNA

from muscle tissue was purified following the protocol

described by Fernandez-Tajes et al. (2007). PCR amplifi-

cations from template genomic DNA (25 ng) were

performed in a final volume of 25 ll (10 ng/ll), using spe-

cies-specific primers for coding and noncoding flanking

regions in the three clam species (see Table 1) at 10 lM,

with 1 U/ll of Taq DNA polymerase (Roche Molecular

Biochemicals). The reactions were performed with a first

denaturation step of 4 min 30 s at 95�C, followed by 35

cycles consisting of a 30-s denaturation step at 95�C, 30 s of

Table 1 Specific primers for Veneridae histone genes

Gene Primer Sequence Size

H1 50-H1 GCGAAGACAATTCAGTCGGTT 21-mer

30-H1 GAAAGGGTAGGGCTCAGCT 19-mer

H2A 50-H2A GGAAGAAGCGATGATTTGATTGG 23-mer

30-H2A GAGGGAGTGAGCTATGTTTGAG 22-mer

H2B 50-H2B CATCGCTTCTTCCAGGTAG 19-mer

30-H2B TCATTTTGGGGTGGGACA 18-mer

H3 50-H3 GGGGTGAACAATTGTTAGCTTC 22-mer

30-H3 TTCAGTAACCTGACTGTCTTGG 22-mer

H4 50-H4 CTACAGAGTTACCTCCCGGAT 21-mer

30-H4 ACAAGTTGGACAGGAGAAAGC 22-mer
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annealing at 54�C (except for H2A, at 52�C), and 30 s of

extension at 72�C. A final extension step of 5 min was per-

formed at 72�C. Automatic DNA sequencing was performed

in a CEQ 8000 sequencer (Beckman Coulter). The obtained

sequences were deposited in the GenBank database under the

following accession numbers: R. philippinarum H1 (EF67

0664), H2A (EF670665), H2B (EF670666), H3 (EF670667),

and H4 (EF670668); V. decussatus H1 (EF670669), H2A

(EF670670), H2B, (EF670671), H3 (EF670672), and H4

(EF670673); and V. pullastra H1 (EF670674), H2A (EF67

0675), H2B (EF670676), H3 (EF670677), and H4 (EF67

0678).

Total RNA extracts from frozen adult specimens of V.

pullastra were prepared using the TRIzol Reagent com-

mercial system (Invitrogen) for RT-PCR and transcript

analysis. Poly(A)-rich RNA was prepared using the Mi-

croPoly(A) Purist kit (Ambion) and RT-PCR analyses were

performed using the ‘partial’ set of primers specific for

Mytilus histone genes (Eirı́n-López et al. 2004b). The

acidic extraction and purification of histone proteins were

subsequently performed from gonadal tissue of Venerupis

decussatus in 0.4 N HCl, following the procedure descri-

bed by Ausió (1986). Histone proteins were subsequently

analyzed on polyacrylamide gels under denaturing condi-

tions with sodium dodecyl sulfate (SDS-PAGE).

Molecular Evolutionary Analyses

Six invertebrate representative species, including the histone

sequences in R. philippinarum characterized in the present

work (given that genes from this species show the highest

similarity to the consensus sequences defined for Veneridae

histone genes), were chosen for the evolutionary analysis of

the histone multigene families in invertebrates. Accession

numbers for the chosen sequences are as follows. Strongy-

locentrotus purpuratus (echinoderm): H1, NM_214555;

H2A, NM_214553; H2B, NM_214552; H3, NM_214547;

H4, NM_214551. Drosophila melanogaster (insect) H1,

X14215; H2A, NM_165382; H2B, X14215; H3, X14215;

H4, X14215. Chaetopterus variopedatus (annelid): H1,

U96764; H2A, AF007904; H2B, U96764; H3, U96764; H4,

AF007904. Caenorhabditis elegans (nematode): H1, X53

277; H2A, NM_074631; H2B, NM_073063; H3, NM_074

632; H4, NM_076830. Mytilus galloprovincialis (mollusc):

H1, AJ416424; H2A, AY267755; H2B, AY267740; H3,

AY267748; H4, AY267750.

Nucleotide and amino acid sequences were aligned with

the programs BIOEDIT (Hall 1999) and CLUSTAL W

(Thompson et al. 1997). The alignment of nucleotide

sequences was constructed on the basis of the translated

amino acid sequences. Molecular evolutionary analyses

were performed using the computer program MEGA ver. 3.1

(Kumar et al. 2004). In the case of representative histone

genes from invertebrates the extent of nucleotide divergence

between sequences (d) was estimated using the Kimura two-

parameters model, while the extent of amino acid divergence

between sequences was estimated by means of the uncor-

rected differences (p-distance). The latter method was also

used in the estimation of distances in the long-term evolu-

tionary analyses of eukaryotic H1 and H2A proteins. In both

cases, the numbers of synonymous (pS) and nonsynonymous

(pN) nucleotide differences per site were computed using the

modified Nei-Gojobori method (Zhang et al. 1998), pro-

viding the transition/transversion ratio (R). Distances were

estimated using the pairwise deletion option in all cases with

the exception of protein phylogenetic inference in long-term

evolutionary analyses, where the complete deletion option

was used. Standard errors were calculated by the bootstrap

method with 1000 replicates.

The presence and nature of selection were tested in

invertebrate histone genes using two different approaches:

on one hand, the codon-based Z-test for selection compared

the numbers of synonymous (pS) and nonsynonymous (pN)

nucleotide differences per site, establishing the null

hypothesis as H0: pS = pN and the alternative hypothesis as

H1: pS [ pN (Nei and Kumar 2000); and on the other hand,

the presence of selection was further studied by testing for

deviations from neutrality. The influence of selection on

certain amino acids was analyzed by determining the cor-

relation between the genomic GC content (GC content at

fourfold degenerate sites was assumed to represent the

genomic GC content, given that the latter has already been

shown to be a good approximation of the former [Li 1997;

Nei 1987]) and the proportion of GC-rich (GAPW) and

GC-poor (FYMINK) residues. Under the neutral model,

GC-rich amino acids will be positively correlated with

genomic GC content, whereas GC-poor amino acids will be

negatively correlated with genomic GC content (Rooney

2003). Correlations were computed by using the Spearman

rank correlation coefficient and the statistical significance

was assessed through regression analysis.

The analysis of nucleotide variation across the different

histone coding regions was performed using a sliding-

window approach implemented in the program DnaSP ver.

4.0 (Rozas et al. 2003), by estimating the proportion (p) of

nucleotide sites at which two sequences being compared

are different and the number of synonymous substitutions

(pS) per site, with a window length of 20 bp and a step size

of 5 bp (for p) and a window length of 5 bp and a step size

of 1 bp (for pS).

Long-Term Evolution Analysis of H1 and H2A

Multigene Families

For the study of the long-term evolution of H1 and H2A

histone genes we have included all the nonredundant H1
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and H2A sequences listed in the NHGRI/NCBI Histone

Sequence Database (Marino-Ramirez et al. 2006) as of

July 2007 (see Supplementary Tables 1 and 2) in our

analyses. Phylogenetic trees were reconstructed using the

neighbor-joining tree-building method (Saitou and Nei

1987). The reliability of the resulting topologies was tested

by the bootstrap method (Felsenstein 1985) and by the

interior-branch test (Rzhetsky and Nei 1992; Sitnikova

1996), producing the bootstrap probability (BP) and con-

fidence probability (CP) values for each interior branch in

the tree. Given that the bootstrap method is known to be

conservative, BP [ 80% was interpreted as high statistical

support for interior branches in the tree, and CP = 95%

was otherwise considered statistically significant (Sitnik-

ova et al. 1995). Histone H1 phylogenies were rooted using

the H1 gene from the protist Entamoeba histolytica, one of

the most primitive eukaryotes for which an H1-related

protein has been characterized (Kasinsky et al. 2001). In

the case of H2A, phylogenetic trees were rooted with the

histone H2A from the diplomonad protist Giardia intesti-

nalis, as this lineage is believed to be the first to diverge

from all other eukaryotes (Roger et al. 1998).

The GenBank database and complete genome databases

(human and mouse) were screened for the presence of H2A

pseudogenes using the BLAST tool (Altschul et al. 1990),

identifying two H2A pseudogenes (Homo sapiens W and

Mus musculus W.1) and three H2A.Bbd pseudogenes (Mus

musculus W.2, W.3, and W.4). The presence of truncated or

incomplete H2A sequences, indels in the conserved

regions, and the absence or interruption of the major pro-

moter elements were interpreted as pseudogenization

features.

Results

Characterization of Histone Sequences in the Family

Veneridae

Histone genes from the three clam species were unspe-

cifically amplified through PCR experiments using

previously described primers (Eirı́n-López et al. 2002,

2004b). Once these sequences were obtained, five pairs of

primers (one for each histone type) specific for the family

Veneridae were generated (Table 1), with annealing sites

located at untranslated regions (UTRs) (Fig. 1A). These

primers were used in additional rounds of amplification,

resulting in the fragments shown in Fig. 1A and B. Coding

regions, translated amino acid sequences, and noncoding

flanking regions contained by these fragments are shown in

Supplementary Figs. 1–5. Coding sequences for histone H1

revealed the presence of a 191-amino acid (aa)-long protein

encoded by 573 bp in the three species analyzed.

Comparisons of the protein central conserved domain

among different representative metazoans revealed a high

degree of homology between H1 from Veneridae and the

H1 proteins from mussels, followed by the H1d proteins

from sea urchin and H5/H10 from vertebrates (Fig. 1C). In

the case of core histones, all three species showed a 125-

aa-long H2A protein encoded by 375 bp, a 124-aa-long

H2B protein encoded by 372 bp, a 136-aa-long H3 protein

encoded by 408 bp, and a 103-aa-long H4 protein encoded

by 309 bp.

Promoter regions are highly conserved, in particular,

major regulatory elements involved in transcriptional

activity (Supplementary Figs. 1–5). Perfect TATA signals

were identified for H1, H2A, H2B, and H4 genes at posi-

tions -83 to -90, -69 to -72, -62 to -69, and -56 to

-61, respectively. CAAT box signals were identified in all

cases and two were present in the H3 gene, a characteristic

feature of vertebrate histone genes (Connor et al. 1984).

The short sequence 50- PuCATTCPy-30, which represents

putative CAP sites, was also present in all genes except in

H1 and generally 50 to 70 bp upstream of the start codon

(Sures et al. 1980). Histone H1 promoter regions showed

the presence of typical elements of linker histone genes

such as an H1 box-like element (-170 to -177) followed

by an H4 box element (-102 to -118) (Fig. 2). The latter

element occupies the same position that the CAAT box

occupies in somatic subtypes and is typical of H4 genes

and linker histone ‘orphon’ variants (Peretti and Khochbin

1997).

Each of the histone genes analyzed showed the typical

palindrome sequence forming the stem-loop structure at the

noncoding 30 terminal regions, followed by a purine-rich

element 13–14 bp downstream (Supplementary Figs. 1–5).

The stem-loop consensus sequence for the Veneridae

genes was defined as 50-G
AGCCCTTTTC

AAGGGCC
T-30

(Table 2). These two sequence blocks are typical of all

replication-dependent (RD) histone genes and are related to

the binding of the primary mRNA transcript to the U7

snRNP. Surprisingly, all genes show at least one additional

mRNA termination signal downstream of the palindrome

sequence: a polyadenylation signal which is typical of rep-

lication-independent (RI) histone genes expressed at

constant levels throughout the cell cycle. The functionality

of such putative polyadenylation signals was assessed in RT-

PCR experiments on the polyadenylated mRNA fraction

from V. pullastra using primers specific for histone coding

(internal) regions (Eirı́n-López et al. 2002). The amplified

fragments displayed the expected sizes in all five histone

genes (Fig. 3A), supporting the polyadenylated status of at

least a fraction of linker and core histone transcripts in

Veneridae. The Veneridae histone proteins were extracted

and further analyzed using denaturing SDS gels (Fig. 3B),

showing a histone H1 which has a mobility similar to that of
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histone H5 in birds (another RI histone), lending further

support to the results obtained in the expression analyses.

Histone Evolution in Invertebrate Organisms

In order to include the characterization of Veneridae histone

genes in a broader evolutionary background, six represen-

tative species of invertebrate groups were included in our

analyses (see Materials and Methods). The nucleotide var-

iation and the number of synonymous substitutions (pS) per

site across the histone sequences were investigated as

shown in Fig. 4. The relative contribution of pS to p is

evident, and in most cases, the overall amount of nucleotide

variation is the result of the underlying synonymous vari-

ation. Indeed, synonymous variation is higher in the central

conserved domains of histone proteins (especially in H3 and

H4) as well as in certain regions of the tails, likely due to the

presence of punctual residues amenable to posttranslational

modifications. As described in Supplementary Table 3, the

synonymous nucleotide variation was significantly greater

than the nonsynonymous variation in all cases.

The presence and nature of selection in invertebrate

histones were studied using two different approaches. First,

a Z-test of selection was used in comparing the numbers of

synonymous (pS) and nonsynonymous (pN) substitutions

detailed in Supplementary Table 3. Accordingly, it is

possible to reject the null hypothesis that both values are

not significantly different (H0: pS = pN; P \ 0.001, Z-test),

suggesting the presence of purifying selection acting on

these proteins. Results of the Z-test also reveal that this

purifying process is especially strong in H3 (P = 21.182)

and more relaxed in histone H1 (P = 10.773). Taking into

account that histones have a characteristically high pro-

portion of nonpolar and basic residues, the presence of

selection for certain biased amino acids in the invertebrate

histone families was analyzed by determining the correla-

tion coefficients between genomic GC content and the

frequency of GC-rich and GC-poor amino acids (Fig. 5).
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Fig. 1 (A) Schematic

representation of the annealing

positions of the specific primers

designed for Veneridae histone

genes in the present work

(arrows), indicating the size of

the amplified fragments. Coding

regions are represented by

boxes, with the protein central

domain shown in black. (B)

PCR amplifications of the five

histones from Ruditapes
philippinarum, Venerupis
decussatus, and Venerupis
pullastra genomic DNA using

the primers indicated above. (C)

Comparison of the H1 central

conserved domain between RD

and RI isoforms from different

taxonomic groups. Asterisks

indicate perfect matches, colons

indicate a high degree of

homology, and dots indicate a

low degree of homology

between residues
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No significant correlations were detected in any case,

although the central domains of H1 and H2A were close to

a significance threshold (Table 3).

Phylogenetic Analysis of the H1 and H2A Histone

Families

Further to the previous data on the long-term evolution of

H1, we have reconstructed a phylogeny of H1 proteins

composed of 138 amino acid sequences of 53 species

belonging to different eukaryotic kingdoms, including the

Veneridae sequences characterized in the present work

(Supplementary Table 1). The different taxonomic groups

are well defined by the topology (Fig. 6), showing a clus-

tering pattern based on the H1 types (and not the species to

which they belong). It is important to note that H1 sequences

from the Veneridae species are located within the mono-

phyletic group of H1 RI variants, the H1 histones from

Mytilus and H1d from sea urchin, and the H5/H10 differen-

tiation-specific subtypes from vertebrates. This observation,
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Fig. 2 Structure of the H1 gene proximal promoter region. (A)

Molecular structure of promoter regions of vertebrate RI H1 genes

(H10 and H5) in comparison with those of invertebrate RI H1 genes

(clam, mussel, and sea urchin ‘orphon’ H1 genes). The similarities to

the H4 site II element from the H4 gene promoter region are also

indicated. (B) Molecular organization of the promoter regions in

somatic, tissue-specific, and stage-specific H1 genes. (C) Molecular

structure of the promoter regions of Veneridae core histone genes.

Major regulatory elements are schematically represented by black

boxes, and the corresponding regions of the alignments are shown in

the open boxes

Table 2 Transcription termination signals in Veneridae histone genes

Histone gene Stem-loop signal Purine-rich motif Poly(A) signal

H1 +44 AGCCCTTTTAAGGGCT +73 AAAAAGAA Y

H2A +31 GGCCCTTTTCAGGGCC +60 AAAAAGAA Y

H2B +27 GGCCCTTTTCAGGGCC +56 AAAAAGAG Y

H3 +26 GGCCCTTTTAAGGGCC +60 AAAA
TAGAG Y

H4 +34 GGCCCTTTTCAGGGCC +63 AAAAAGAA Y

Consensus

Veneridae G
AGCCCTTTTC

AAGGGCC
T AAAA

TAGAA
G Y

M. galloprovincialis G
AGCCCTTTTC

AAGGGCC
T AAAAAGAG

A Y

S. purpuratus GGCC
TCTTTTCAGG

AGCC CAAGAAAGA N

P. dumerilii GGCCT
ATTTTAAT

AGGCC CAAAAGA N

C. variopedatus GGC
TCCTTTACTT

CAGGG
ACC CC

A
G

A
G

AGAAA Y

C. thummi CGAGTCT
CTTTTC

TAA
GGA

GCCGT AAG
AAG

AAG
A Y

A. aquaticus GGGCT
T

CCC
TATTC

T
G

AGT
C
CGACC AA

CAAA
GAGA Y

D. hydei G
T
GTCCCTTTTCAGGA

GCTCG
C

A
C

AAA
GGAG

A
ACT

A
T N

O. mykiss GGCTCTTTTAAGAGCC A
T
G

CAAAG
A N
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together with their polyadenylated status, supports the notion

of an ‘orphon’ origin for Veneridae histone genes, which are

the only protostome group (together with mussels) where RI

H1 histones have been identified to date.

Although H2A is among the best-characterized and more

diverse histone families, long-term evolutionary studies on

this family are lacking. We have reconstructed phylogenetic

trees for H2A proteins (Fig. 7) and H2A genes (Supple-

mentary Fig. 6) from sequences belonging to different

eukaryotic kingdoms (Supplementary Table 2). As for H1,

the different taxonomic groups are also well defined in the

H2A topology, showing a type-based clustering pattern

(except in the case of H2A.X, which shows a sporadic dis-

tribution with recurrent appearances along evolution). The
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0.5 Kb
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amplifications of histone genes
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from V. pullastra mRNA

(polyadenylated fraction) using

the internal primers defined by

Eirı́n-López et al. 2004b). (B)

SDS polyacrylamide gel

electrophoresis (PAGE) analysis

of V. decussatus histone

proteins. Chicken erythrocyte

histones (CM) were used as

markers, revealing similar sizes

for Veneridae histone H1 and

the histone H5 from chicken.
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Fig. 4 Proportion (p) of

nucleotide sites at which two

sequences being compared are

different, and the numbers of

synonymous substitutions (pS)

per site across the coding

regions of H1, H2A, H2B, H3,

and H4 histones from

representative invertebrate

organisms. The nucleotide

variation values were calculated
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for p, and a window length of

5 bp and a step size of 1 bp for

pS. The corresponding

secondary structure of each

histone type is represented

below the corresponding graph

as in Fig. 1A

J Mol Evol (2008) 66:505–518 511

123



extent of the synonymous variation among H2A genes is

very large, with the range of pS being nearly the same for both

within- and between-species comparisons (Table 4). This

observation suggests that H2A genes from a species are no

more closely related to each other than they are to genes from

species belonging to very different eukaryotic kingdoms. In

addition, five H2A pseudogenes were identified in genomic

databases: one H2A human pseudogene (W), one H2A

mouse pseudogene (W.1), and three H2A.Bbd mouse pseu-

dogenes. By comparing the nucleotide differences between

pseudogenes and functional genes with the average intra-

specific variation in functional genes, it is likely that two of

the H2A.Bbd pseudogenes identified in M. musculus (W.3

and W.4) have emerged quite recently, given their low

divergence values and relatively short branches in the phy-

logeny. However, the H2A pseudogenes identified in H.

sapiens (W) and M. musculus (W.1) and one of the H2A.Bbd

identified in M. musculus (W.2) seem to be older, given their

significant sequence divergence, with functional genes and

longer branch lengths (Table 5 and Supplementary Fig. 6).

Discussion

Molecular Characterization of Histone Genes

in Veneridae

In the present work, the isolation and molecular charac-

terization of the histone gene family from three clam

species belonging to the family Veneridae have been car-

ried out. The sequences obtained showed the simultaneous

presence of two types of transcription termination signals in

30 UTRs: a stem-loop signal related to a RD expression

pattern during the S-phase of the cell cycle and an addi-

tional polyadenylation signal characteristic of RI genes

(Marzluff 1992). This duality, which is commonly observed

in replacement and canonical vertebrate histones, has also

been previously reported in histone genes from some

invertebrate organisms including annelids (del Gaudio

et al. 1998), crustaceans (Barzotti et al. 2000), and mussels

(Eirı́n-López et al. 2004b). From an evolutionary point of

view, this phenomenon could be the result of a progressive

replacement of one of the signals for the other. This process

would be more efficient and specific for controlling the

maturation of the mRNA of histones in defined stages or

tissues (del Gaudio et al. 1998). Furthermore, additional

explanations for the coexistence of both signals could be

invoked, especially as it pertains to its relationship with

DNA repair mechanisms. It is now well known that the

block of DNA synthesis resulting from DNA damage leads

to the rapid degradation of histone mRNAs bearing stem-

loop signals in some species. Consequently, the cell is not

able to accommodate the packaging of DNA after repair in

the absence of canonical histones. A possible solution to

this barrier would involve the facultative use of the poly-

adenylation tail ‘pathway,’ which would allow for the

existence of a stable histone pool that is able to package the

DNA once repair has finished.
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Furthermore, RI features, such as the presence of a H4

box element (van Wijnen et al. 1992), were also observed

in promoter regions from H1 genes, similar to the promoter

sequence of the H4 histone gene present in H1 RI histones

from vertebrates (Schulze and Schulze 1995). In addition,

electrophoretic analyses of histone proteins from clams

revealed that histone H1 is similar in size and mobility to

the very specialized histone H5 from chicken (Schulze and

Schulze 1995). This suggests that H1 genes from Veneri-

dae constitute a RI lineage of ‘orphon’ histone variants that

are, with H1 ‘orphon’ genes from Mytilus, the only such

examples in protostomes (Eirı́n-López et al. 2005).

Table 3 Correlations between genomic GC content and frequency of

GC-rich (GAPW) and GC-poor (FYMINK) amino acids, discrimi-

nating between complete histone proteins and central conserved

domains

Histone rS P-value

H1 Complete

GC fourfold vs. GAPW 0.116 0.795

GC fourfold vs. FYMINK -0.464 0.300

Central

GC fourfold vs. GAPW 0.529 0.237

GC fourfold vs. FYMINK -0.765 0.087

H2A Complete

GC fourfold vs. GAPW 0.152 0.734

GC fourfold vs. FYMINK 0.058 0.897

Central

GC fourfold vs. GAPW 0.000 1.000

GC fourfold vs. FYMINK 0.750 0.093

H2B Complete

GC fourfold vs. GAPW 0.059 0.895

GC fourfold vs. FYMINK 0.290 0.517

Central

GC fourfold vs. GAPW -0.532 0.234

GC fourfold vs. FYMINK 0.059 0.895

H3 Complete

GC fourfold vs. GAPW -0.515 0.250

GC fourfold vs. FYMINK 0.172 0.701

Central

GC fourfold vs. GAPW -0.172 0.701

GC fourfold vs. FYMINK 0.664 0.138

Note: rS Spearman rank correlation coefficient

Fig. 6 Phylogenetic relationships among H1 proteins from different

eukaryotic groups using p-distances. The numbers for interior

branches represent BP values (boldface), followed by CP interior-

branch test values (normal) based on 1000 replications, and are only

shown when the value is [ 50%. Numbers in parentheses near species

indicate the H1 subtype; in boldface, the number of sequences

analyzed for each species. Taxonomic groups are indicated in the

right margin of the tree
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Evolution of Invertebrate Histones

Histone genes from Veneridae species were included in a

broader taxonomic context in order to study their evolu-

tionary features within the context of invertebrate

organisms. Our analyses revealed that histone proteins are

highly conserved and that their long-term evolution may be

subject to a strong purifying selection process operating at

the protein level. Such a hypothesis is corroborated by the

results of the Z-tests of selection performed (Supplemen-

tary Table 3) and by the analyses of the correlation

between the genomic GC content and the frequency of

GC-rich and GC-poor amino acids (Fig. 5 and Table 3).

This method was applied to the histone family for the first

time in the present work.

The patterns of nucleotide variation along the coding

regions of invertebrate histone genes (Fig. 4) revealed high

levels of synonymous substitutions in segments corre-

sponding to the protein central domains of core histones

and in specific positions at histone tails. The latter is likely

related to the presence of residues amenable for post-

translational modifications in these regions. This probably

reflects the existence of specific constraints operating on

the individual domains of the molecules. Considering that

core histones are critical in gene expression regulation

through interactions with specific transcription factors

(Wolffe et al. 1997), the higher conservation of N-terminal

domains would indicate that these are the main protein

segments responsible for regulation of gene expression

(Ponte et al. 1998).

Long-Term Evolution of H1 and H2A Histone Families

The long-term evolution of histone gene families has been

classically described as a process of concerted evolution

(Hentschel and Birnstiel 1981). Nevertheless, recent stud-

ies have demonstrated that the role of unequal crossing-

over and gene conversion is not significant in the long-term

evolution of at least the H1, H3, and H4 families. Contrary

to the notion of homogenization, the birth-and-death model

(defined here as a gradual process of evolution leading to

the functional diversification of the histone family mem-

bers) is based on events of recurrent gene duplication

(diversification). This is followed by the specialization of

some of the new genes (differentiation) which may remain

in the genome for long periods of time, whereas others will

be inactivated (pseudogenization) and even physically

eliminated (Nei and Rooney 2006).

Fig. 7 Phylogenetic relationships among H2A proteins from differ-

ent eukaryotic groups using p-distances. The numbers for interior

branches and near species names are as in Fig. 6. Taxonomic groups

are indicated in the right margin of the tree
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The long-term evolutionary mechanisms previously

reported for the H1 family (Eirı́n-López et al. 2004a)

allowed us to include the histone H1 genes from Veneridae

in this general picture. The phylogeny of H1 proteins

places Veneridae H1 histones within the monophyletic

group that brings together the vertebrate RI isoforms (H10

and H5), next to the H1d gene from the sea urchin

Strongylocentrotus purpuratus and the H1 genes from

Mytilus (Fig. 6). These results, together with the charac-

terization of polyadenylated H1 transcripts from Veneridae

and the observed homologies between coding/noncoding

regions of Veneridae H1 and those from RI isoforms,

support the ‘orphon’ origin of these genes. This reinforces

the hypothesis that defines them as specific RI genes from

invertebrates (Eirı́n-López et al. 2004b, 2005) that origi-

nated before the split between protostomes and

deuterostomes (Eirı́n-López et al. 2006b).

The results presented in this work show for the first time

evidence for the birth-and-death evolution of the H2A

family members, contrary to the classic notion of concerted

evolution. The reconstructed topologies reveal that differ-

ent H2A variants are clustered by type and not by species,

indicating that RI variants arose once very early in evolu-

tion and that they are more closely related to each other

than to the major H2As from the same species (Thatcher

and Gorovsky 1994). One exception is H2A.X, which is

subject to recurrent events of differentiation during H2A

evolution (Malik and Henikoff 2003). In addition, the

extent of pS is always significantly greater than that of pN

in comparisons both within and between species (Table 4),

suggesting an extensive silent divergence among H2A

genes. These observations, rather than having an important

effect of interlocus recombination (both synonymous

and nonsynonymous substitutions would acquire similar

Table 4 Average numbers of synonymous (pS) and nonsynonymous (pN) nucleotide differences per site and average transition/transversion ratio

(R) in H2A genes from representative vertebrates, invertebrates, plants, protists, and fungi

pS (SE) pN (SE) R pS (SE) pN (SE) R

Vertebrates Plants

Chicken 0.028 (0.015) 0.000 (0.000) 1.1 Arabidopsis 0.000 (0.000) 0.000 (0.000) 1.0

Human 0.504 (0.020) 0.109 (0.012) 0.8** Lillium longiflorum 0.000 (0.000) 0.000 (0.000) 0.9

Mouse 0.246 (0.040) 0.023 (0.011) 0.6** Plants 0.705 (0.013) 0.268 (0.019) 0.7**

Xenopus laevis (A–C genes) 0.820 (0.049) 0.296 (0.033) 1.0**

Chicken/duck 0.071 (0.017) 0.005 (0.005) 3.5** Protists

Mouse/rat 0.286 (0.040) 0.033 (0.013) 0.9** Volvox carteri 0.303 (0.040) 0.011 (0.006) 2.1**

Mammals 0.420 (0.021) 0.066 (0.008) 0.9** Volvox/Chlamydomonas 0.291 (0.040) 0.017 (0.007) 1.3**

Bufo/Xenopus 0.605 (0.045) 0.179 (0.021) 0.6**

Fish 0.607 (0.045) 0.213 (0.030) 0.6** Fungi

Invertebrates Saccharomyces 0.227 (0.048) 0.007 (0.005) 0.6**

Drosophila 0.707 (0.056) 0.276 (0.035) 0.9** Fungi 0.609 (0.020) 0.137 (0.015) 1.0**

Mytilus 0.047 (0.014) 0.002 (0.001) 1.5*

S. purpuratus 0.665 (0.052) 0.092 (0.020) 0.8**

Drosophila/Rhynchosciara 0.660 (0.031) 0.198 (0.025) 1.0** H2A.Z subtype 0.160 (0.024) 0.000 (0.000) 2.4**

Annelids 0.630 (0.050) 0.049 (0.015) 0.7** H2A.Bbd subtype 0.410 (0.046) 0.220 (0.027) 0.8**

Sea urchins 0.537 (0.051) 0.088 (0.016) 0.8** MacroH2A subtype 0.518 (0.029) 0.113 (0.011) 0.9**

Note: pS [ pN in Z-test comparisons; * P \ 0.05 and ** P \ 0.001. SE: standard errors calculated by the bootstrap method with 1000 replicates

Table 5 Pseudogene and functional H2A and H2A.Bbd nucleotide divergences using p-distances

Pseudogene Divergence p-distance (SE)

Pseudogene vs. functional Average functional genes Histone type

Homo sapiens H2A (W) 0.692 (0.025) 0.116 (0.010)** Canonical

Mus musculus H2A (W.1) 0.604 (0.027) 0.087 (0.014)** Canonical

Mus musculus H2A.Bbd (W.2) 0.703 (0.027) 0.290 (0.014)** Bbd type

Mus musculus H2A.Bbd (W.3) 0.297 (0.025) 0.290 (0.014) Bbd type

Mus musculus H2A.Bbd (W.4) 0.305 (0.023) 0.290 (0.014) Bbd type

Note: ** P \ 0.001 in Z-test comparisons between pseudogene and functional genes. Standard errors (SE) were computed by the bootstrap

method (1000 replicates) and are indicated in parentheses
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values), best fit the gradual evolution model through birth-

and-death. Accordingly, the nucleotide divergence among

members of the multigene family will be observed pri-

marily at the synonymous level and pairs of genes that

were duplicated recently are expected to be closely related

or even identical (Nei et al. 2000).

As mentioned earlier, some of the duplicated genes may

become pseudogenes under the birth-and-death model of

gradual evolution. In this regard, the presence of H2A

pseudogenes showing significant differences from func-

tional genes suggests that neither intergenic gene

conversion nor unequal crossing-over plays a major role in

homogenizing the family members (Ota and Nei 1994). On

the other hand, the absence of significant differences from

functional H2A genes and the moderate lengths of the

branches in the phylogeny (Table 5 and Supplementary

Fig. 6) suggest a recent loss of function in the case of

H2A.Bbd pseudogenes (W.3 and W.4) from M. musculus.

H2A pseudogenes from H. sapiens and M. musculus, and

one of the H2A.Bbd pseudogenes (W.2) from M. musculus,

which show significant differences from functional genes,

seem otherwise to be quite old.

The results described in the present work are of relevance

to the field in two main aspects. First, we report for the first

time the sequences of the members of the histone multigene

family from three species of clams from the family Ven-

eridae, which represent an ‘orphon’ lineage in the case of

molluscan H1. The former, together with mussel H1 his-

tones, are the only example of this type of genes in

protostomes. These results lend further support to the idea

of a common evolutionary origin for RD and RI H1 genes

before the differentiation between protostomes and deut-

erostomes, where the RI lineage would have also been

closely related to the differentiation and diversification of

the genes encoding the sperm nuclear basic proteins (Eirı́n-

López et al. 2006a, b). Second, the observation of a func-

tional clustering of H2A isoforms in the phylogenies, the

extensive synonymous nucleotide divergence between

genes, and the presence of significantly divergent pseudo-

genes suggest that the members of this histone family do not

evolve in concerted manner, but are subject to a birth-and-

death process under a strong purifying selection at the

protein level. Such a model of gradual evolution allows for

the diversification of the members of the H2A histone

family, leading to their subsequent differentiation into

specific variants and, thus, completing the complex evolu-

tionary picture for these multigene families in eukaryotes.
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footsteps of linker histone evolution. J Biol Chem 281:1–4
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Gendron N, Dumont M, Gagné M-F, Lemaire S (1998) Poly A-

containing histone H4 mRNA variant (H4-v.1): isolation and

sequence determination from bovine adrenal medulla. Biochim

Biophys Acta 1396:32–38

Hall TA (1999) BioEdit: a user-friendly biological sequence align-

ment editor and analysis program for Windows 95/98/NT.

Nucleic Acids Symp Ser 41:95–98

Hentschel CC, Birnstiel ML (1981) The organization and expression

of histone gene families. Cell 25:301–313

Kasinsky HE, Lewis JD, Dacks JB, Ausió J (2001) Origin of H1
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