
Lecture Notes in Computer Science 7902
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Ignacio Rojas Gonzalo Joya
Joan Gabestany (Eds.)

Advances in
Computational
Intelligence
12th International Work-Conference
on Artificial Neural Networks, IWANN 2013
Puerto de la Cruz, Tenerife, Spain, June 12-14, 2013
Proceedings, Part I

13



Volume Editors

Ignacio Rojas
University of Granada
Department of Computer Architecture
and Computer Technology
18071 Granada, Spain
E-mail: irojas@ugr.es

Gonzalo Joya
University of Malaga
Department of Electronics Technology
29071 Malaga, Spain
E-mail: gjoya@uma.es

Joan Gabestany
Universitat Politecnica de Catalunya
Department of Electronics Engineering
08034 Barcelona, Spain
E-mail: cabestany@aha-dee.upc.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-38678-7 e-ISBN 978-3-642-38679-4
DOI 10.1007/978-3-642-38679-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013938983

CR Subject Classification (1998): J.3, I.2, I.5, C.2.4, H.3.4, D.1, D.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Table of Contents – Part I

Invited Talks to IWANN 2013

It’s as Easy as ABC: Introducing Anthropology-Based Computing . . . . . 1
John N.A. Brown

Extreme Learning Machine: A Robust Modeling Technique? Yes! . . . . . . . 17
Amaury Lendasse, Anton Akusok, Olli Simula, Francesco Corona,
Mark van Heeswijk, Emil Eirola, and Yoan Miche

A Novel Framework to Design Fuzzy Rule-Based Ensembles Using
Diversity Induction and Evolutionary Algorithms-Based Classifier
Selection and Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Oscar Cordón and Krzysztof Trawiński
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Ángela Fernández, Carlos M. Aláız, Ana M. González,
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Rogério M. Calazan, Nadia Nedjah, and Luiza de Macedo Mourelle

A Particle-Swarm-Optimized Fuzzy Classifier Used for Investment
Decision Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Lars Krueger and Matthias Walter

Ant Colony Optimization Inspired Algorithm for 3D Object
Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Rafael Arnay and Leopoldo Acosta

Kernel Methods and SVM

Kernelizing the Proportional Odds Model through the Empirical Kernel
Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
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José Luis Subirats, Rafael Marcos Luque-Baena,
Daniel Urda, Francisco Ortega-Zamorano, José Manuel Jerez, and
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José Manuel Sánchez Pascualvaca, Carlos Fernandes,
Alberto Guillén, Antonio M. Mora, Rogerio Largo,
Agostinho C. Rosa, and Luis Javier Herrera

An n-Spheres Based Synthetic Data Generator for Supervised
Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613

Javier Sánchez-Monedero, Pedro Antonio Gutiérrez,
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Abstract. This work presents the results of applying two clustering techniques 
to gene expression data from the mussel Mytilus galloprovincialis. The 
objective of the study presented in this paper was to cluster the different genes 
involved in the experiment, in order to find those most closely related based on 
their expression patterns. A self-organising map (SOM) and the k-means 
algorithm were used, partitioning the input data into nine clusters. The resulting 
clusters were then analysed using Gene Ontology (GO) data, obtaining results 
that suggest that SOM clusters could be more homogeneous than those obtained 
by the k-means technique. 

Keywords: clustering, microarray, neural networks, data mining, 
bioinformatics, gene ontology.  

1 Introduction 

Gene expression can be defined as the process by which information from a gene is 
used in the synthesis of a functional gene product, which is often a protein. Measuring 
this activity or expression for thousands of genes at once enables creating a global 
picture of cellular function, which is known as gene expression profiling. 

Microarrays [1, 2] are tools widely used to analyse gene expression profiles of a 
large number of genes simultaneously. This method is an approach to the quantitative 
analysis of the proteins being produced under given environmental and physiological 
circumstances, assuming that each gene would produce one single type of protein, 
which is not absolutely accurate but is widely accepted as an approximation [3]. 

The application of clustering techniques to this kind of data allows identifying non-
obvious relationships between genes such as co-expression phenomena [4, 5]. This 
approach represents a valuable contribution to marine research since molecular data 
                                                           
* The first two authors contributed equally to this paper.  
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remains scarce for this kind of organisms, despite their environmental relevance, 
especially regarding seawater pollution monitoring. 

The mussel Mytilus galloprovincialis is considered an excellent sentinel organism 
in coastal environmental control given its sessile condition, ubiquity and extremely 
high seawater filtering rate [6-8]. Although much effort is being placed on the 
sequencing of the genomes of mussels and other molluscs, there is still an important 
gap in the knowledge of these marine invertebrates [9].  

The present work contributes to this goal by covering technical aspects of 
molecular data management which are relevant for marine biology research. Several 
helpful and widely known techniques are used here to get an insight into non obvious 
biological patterns, constituting the basis to many other more sophisticated methods 
of gene expression analysis that very often rely not just in the experimental 
quantitative data, but also in qualitative metadata by using Gene Ontology (GO) 
annotation statistics. 

2 Materials and Methods 

2.1 Mytilus Galloprovincialis Data 

For this study, a dataset previously published by Banni et al. [10] was used. This data 
was obtained as a result of an expression profiling experiment by array and it 
represents temporal expression analysis of female digestive gland tissue from the 
mussel M. galloprovincialis. It contains 11 gene expression records from 295 genes. 
The data was retrieved from the Gene Expression Omnibus (GEO) database and it can 
be accessed at the following link: http://www.ncbi.nlm.nih.gov/projects/geo
/query/acc.cgi?acc = GSE23052. 

2.2 Clustering Techniques 

In this study, the performance of two clustering techniques was compared: a Self-
Organising Map (SOM) [11, 12] and the k-means [13] algorithm. These techniques 
have been applied over the time to solve a variety of problems in many different 
environments, obtaining good results [14-27]. Both techniques were implemented 
using Matlab and several configurations were tested to achieve the results shown in 
this paper.  

2.2.1   Self-Organising Map (SOM) 
A SOM is a type of Artificial Neural Network (ANN) which uses unsupervised 
learning to group instances taken as input, projecting these onto a regular, usually 
two-dimensional grid called map. In this technique, an instance will be mapped into 
the node which is nearer to it using some metric. Unlike other ANNs, a 
neighbourhood function is used in order to preserve the topological properties of the 
input space. 



 Clustering of Gene Expression Profiles Applied to Marine Research 455 

2.2.2   K-Means 
K-means is a method designed for cluster analysis which partitions the instances 
taken as input into k clusters in such a way that each instance will belong to the 
cluster with the nearest mean. 

2.3 Ontologies 

An ontology [28] is a formal representation of knowledge, involving a set of concepts 
within a domain, and the relationships between pairs of concepts. It can be used to 
model a domain and support reasoning about entities. Ontologies can be graphically 
represented as graphs (nodes = concepts; edges = relationships) or trees (nodes and 
leaves = concepts; branches = relationships, including hierarchical relationships). 
Ontologies have been widely used, especially in fields related to biomedicine, gaining 
a lot of attention in the past few years [29-31]. 

2.3.1   Gene Ontology (GO) 
Reported knowledge about genomic data and their products is wide and 
heterogeneous in nature, however, big efforts have been carried out by specialized 
consortiums in order to standardize this knowledge. This has been done by defining 
specific terms and relationships among them, so the gene attributes are then described 
in a more machine-like manner. This approach allows for the application of 
Knowledge Discovery in Databases techniques, very useful in functional analysis of 
massive genomic data. Furthermore, Evidence Codes are used to account for the 
reliability of the annotations, and weights are established for analysis automatization.  

Gene Ontology covers three key aspects in gene description: the Biological Process 
it takes part in, Molecular Function of its corresponding gene product and Cellular 
compartment referring to the specific cellular location where it mainly displays its 
action. The GO terms belonging to any of these three categories have ancestor (lower 
level) - descendent (higher level) relationships between them, becoming more specific 
and informative the higher the term’s level is. This ontology structure complies with 
the general build up of ontologies, with GO terms being represented as nodes and 
relationships as branches. A thumb rule in ontology, that also applies to GO, is that if 
a gene is annotated with a specific GO term, the correspondence with all its ancestor 
terms is automatically inferred. This has critical implications for the functional 
analysis of datasets that analysis tools, such as those embedded in the Blast2GO suite, 
have taken into account. 

2.3.2   Blast2GO 
Blast2GO [32-35] is a software suite designed for functional annotation of genomic 
sequences using GO terminology and for the analysis of such annotation data. In this 
paper, genes were annotated specifically with terms belonging to the Biological 
Process type, and the resulting clusters were analysed using the statistical tools 
provided by the Blast2GO software in order to obtain those terms that are more 
representative of each clustered gene set. 



456 V. Aguiar-Pulido et al. 

Blast2GO ranks the GO terms related to the sequences in each set based on scores. 
Scores are calculated out of the number of sequences annotated with a given term and 
the distance (number of intermediate nodes) from the GO term directly assigned to the 
sequence to that one that is being scored. This way, the fact that more general GO 
terms are more likely to get high scores as they add up all sequences annotated by 
descendent nodes, is compensated by the fact of getting penalized by the distance to 
the actual term reported as gene annotation. Therefore, the score is calculated 
according to the following formula: 

 

where seq is the number of different sequences annotated at a child GO term, dist the 
distance to the node of the child and  is a constant parameter set to default value 0.6. 

3 Results and Discussion 

Many tests were run until obtaining the best configuration parameters of the two 
techniques used in this paper. The same distance metric was used for both methods so 
that results could be fairly compared. The metric that was finally used was the 
Euclidean distance. In the case of the SOM technique, different architectures were 
tested in order to choose the one that obtained the best clusters, that is, an architecture 
involving 9 neurons. As for the k-means technique, several cluster numbers were 
tested and, finally, k=9 seemed to obtain the best partitions. 

Banni et al. [10] also used the k-means algorithm for the computation of different 
gene expression trends, obtaining similar results to those presented here. The authors 
of this paper obtained ten clusters but concluded that two of those clusters could be 
merged into one. 

Fig. 1 and Fig. 2 show the differences between the performances of the proposed 
models. The horizontal axis represents time (in months) and the vertical axis 
represents the expression level. Although there are resemblances in the results 
obtained by both techniques, some genes are clustered into different partitions. 
Observing these figures, we can study the behaviour of the different genes in terms of 
gene expression over the time for each cluster and for each technique. 

Analysing these graphics and the genes contained in each cluster, we found the 
following: 

- the k-means technique divided cluster 1 obtained by the SOM technique into 
two different clusters (clusters 8 and 9) 

- most of the elements contained in cluster 2 obtained by the SOM, were part of 
k-means’ cluster 4 

- clusters 3 and 4 of SOM corresponded to cluster 6 of k-means 
- clusters 4 and 7 of SOM corresponded to cluster 2 of k-means 
- cluster 6 of SOM and cluster 5 of k-means were very similar, the same 

happens for cluster 8 of SOM and cluster 3 of k-means. 
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Fig. 1. SOM clustering 

 

Fig. 2. K-means clustering 
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Results are mainly consistent between both techniques regarding the biological 
sense of the obtained clusters. Table 1 and Fig. 3 show the most relevant results of the 
GO term analysis for each cluster, presenting the levels they belong to as a way of 
measuring how specific the terms are and how informative they get. It is worth 
highlighting that in the case of k-means clusters, there are two gene sets that have not 
obtained any representative GO term by failing to achieve the minimum score 
threshold set by default in Blast2GO analysis tool, while this happens for only one of 
the clusters obtained by the SOM technique. 

Table 1. TOP 3 Highest scored GO-terms level 

Cluster # K-means SOM 

1 10, 9, 8 N/A 

2 6,5,2 6,5,1 

3 5,4,3 10,8,8 

4 6,5,1 7,6,5 

5 6,5,4 8,3,2 

6 2,3,8 6,5,4 

7 6,5,4 6,5,2 

8 N/A 4,5,3 

9 N/A 6,3,1 

 

Fig. 3. GO-term level occurrence 
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Cases such as the SOM cluster 2 and k-means cluster 4, that are similar in terms of 
included genes and profile shape, obtain very similar GO terms statistics, having the 
same GO term "translation" (GO:0006412) as the most representative of the group. 
As an example of clusters displaying different ontological representation, we find the 
case of SOM clusters 6 and 3, and k-means clusters 5 and 6, all alike in the profile 
shapes. While SOM cluster 6 throws the same ontological results as k-means cluster 
number 5, there exist significant differences between SOM cluster 3 and k-means 
cluster 6. For the first one (SOM cluster 3), the most representative GO terms are 
terms of high specificity, belonging to the GO levels 10-8 (being the higher the GO 
level, the more specific the term), while for the latter (k-means cluster 6), the GO 
terms that obtained the highest representation belong to the levels 2-3, meaning that 
these are rather general terms not so informative of the biological meaning of this 
group of genes. This can be understood as being SOM clusters more homogeneous 
than those obtained by the k-means technique, since more specific GO terms are 
obtained meaning that more sequences are directly annotated by terms with a closer 
relationship. However, ontological analysis has the drawback of low statistical 
significance due to the general lack of functional information for these sequences. 

4 Conclusions and Future Work 

This work presents a study of gene expression analysis using data from a mussel 
species obtained from a year-long experiment. Two techniques, a self-organising map 
(SOM) and the k-means algorithm, were used in order to partition 295 genes with 11 
gene expression records over the time into nine clusters. These clusters were then 
annotated and analysed, obtaining results that suggest that SOM clusters could be 
more homogeneous than those obtained by the k-means technique. 

As future work, we plan to apply more techniques to this type of data, such as 
biclustering. 
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