Environmental epigenetics investigates the cause-effect relationships between specific environmental factors and the subsequent epigenetic modifications triggering adaptive responses in the cell. Given the dynamic and potentially reversible nature of the different types of epigenetic marks, environmental epigenetics constitutes a promising venue for developing fast and sensible biomonitoring programs. Indeed, several epigenetic biomarkers have been successfully developed and applied in traditional model organisms (e.g., human and mouse). Nevertheless, the lack of epigenetic knowledge in other ecologically and environmentally relevant organisms has hampered the application of these tools in a broader range of ecosystems, most notably in the marine environment. Fortunately, that scenario is now changing thanks to the growing availability of complete reference genome sequences along with the development of high-throughput DNA sequencing and bioinformatic methods. Altogether, these resources make the epigenetic study of marine organisms (and more specifically marine invertebrates) a reality. By building on this knowledge, the present work provides a timely perspective highlighting the extraordinary potential of environmental epigenetic analyses as a promising source of rapid and sensible tools for pollution biomonitoring, using marine invertebrates as sentinel organisms. This strategy represents an innovative, ground-breaking approach, improving the conservation and management of natural resources in the oceans.

© 2015 Elsevier Ltd. All rights reserved.
transient adaptations. Nevertheless, many of these epigenetic marks will transcend throughout generations in those cases where the environmental stress persists, securing a continuous response to genotoxicity in the cell and establishing the basis for organismal long-term adaptations.

2. Marine invertebrate models in environmental epigenetics

Oceans bear the brunt of climate change, as evidenced by growing pollution and acidification levels, sea level increase, and changes in temperature and currents. Altogether, these factors impact the health of marine species, ecosystems, and coastal communities, making oceans one of the most important targets for environmental studies (Reid et al., 2009). Among these, pollution has critical consequences due to its inherent deleterious genotoxic effects on marine life, triggering adaptive responses that often involve extensive genetic reprogramming in order to preserve genome integrity (Liu et al., 2010). Therefore, the study of the cause-effect links between pollutants (especially those encompassing genotoxic potential, e.g., Polycyclic Aromatic Hydrocarbons discharged during oil spills and marine biotoxins produced during...
Harmful Algal Blooms) and the biological responses displayed by marine organisms encompasses dual benefits: first, it sheds light into the epigenetic mechanisms underlying environmental adaptive responses; and second, it provides a promising venue for developing fast and sensible pollution biomonitoring programs in the oceans (González-Romero et al., 2012a). Marine invertebrates, the largest group of macroscopic organisms in the oceans (Ruppert et al., 2004), are commonly used as model systems in such studies because of their ubiquitous distribution, easy accessibility and diverse lifestyles including sessile filter-feeding organisms (Gosling, 2003). Among them, bivalve molluscs stand out as model sentinel organisms for the study of pollution, particularly in coastal areas where they constitute valuable commercial resources for the aquaculture industry (Collin et al., 2010; Campos et al., 2012; Fernandez-Tajes et al., 2012; Luchmann et al., 2012; Milan et al., 2013; Suarez-Ulloa et al., 2013a).

The feasibility of environmental epigenetic studies in marine organisms is currently supported by the availability of high-throughput data and computational resources, including the ongoing characterization of several genomes in cnidarians, ctenophores, molluscs, echinoderms and other chordates (Sodergren et al., 2006; Putnam et al., 2007, 2008; Zhang et al., 2012; Moroz et al., 2014). More specifically, DNA methylation has been recently studied using methylation-specific restriction enzymes (del Gaudio et al., 1997; Diaz-Freije et al., 2014; Sun et al., 2014; Zhao et al., 2014) and genome-wide bisulfite sequencing (Zemach et al., 2010; Gavery and Roberts, 2013; Huang et al., 2014). Similarly, structural, functional and evolutionary aspects of chromatin are also being currently studied in this group of organisms (Eirín-López et al., 2002, 2004, 2006, 2009; González-Romero et al., 2009, 2012b) unveiling the presence of specialized histone variants including H2A.X, H2AZ and H3.3 (Arenas-Mena et al., 2007; Schulmeister et al., 2007; González-Romero et al., 2012b), as well as possibly macroH2A and other variants (work in progress). Most importantly, biochemical and transcriptomic analyses suggest that histone variants from marine invertebrates are able to specialize chromatin (González-Romero et al., 2012b) and that several chromatin-associated genes are differentially regulated in response to environmental signals in these organisms (Suarez-Ulloa et al., 2013a). Overall, these results support the role of marine invertebrates as model systems for environmental epigenetic studies.

3. Background on environmental epigenetic studies

Environmental epigenetics represents an emerging field and as such, research efforts are still unevenly distributed across different groups of organisms, environmental factors and epigenetic mechanisms. Epigenetic biomarkers are now within reach in vertebrate model organisms [e.g., human, mouse, zebrafish (Hou et al., 2011; Ho et al., 2012; Williams et al., 2014)], where high-throughput methods have been applied to study the epigenetic basis underlying responses to pesticides (Song et al., 2010), PAHs (Marwick et al., 2004; Kikuchi et al., 2006; Alegria-Torres et al., 2013; Fang et al., 2013), and heavy metals (Santoyo et al., 2011; Gadhia et al., 2012; Basu et al., 2013). Furthermore, the predictive power of gene expression profiles using arrays has been demonstrated in vitro and in vivo, predicting not only toxicity but also discriminating among toxicants according to their mechanisms of action [(Burczynski et al., 2000; Waring et al., 2001; Hong et al., 2003; Elferink et al., 2008; Inadera et al., 2008), Fig. 2]. Nowadays, this goal is routinely approached using omic techniques that include RNA-Seq (transcriptomics) and high-throughput Mass Spectrometry (MS, proteomics). Accordingly, transcriptomics and proteomics have been applied to detect exposure to environmental pollutants in marine invertebrates including mussels and oysters (Suarez-Ulloa et al., 2013b), as well as in several other marine organisms (Schirmer et al., 2010; Slattery et al., 2012). It seems, based on the growing ability to generate and analyze high-throughput data in a broader range of organisms, that the future development of epigenetic biomarkers will walk hand in hand with these technologies (Vandegehuchte and Janssen, 2014).

Environmental epigenetic analyses have also been implemented in other aquatic (freshwater) invertebrates. Among these organisms, the water flea Daphnia is probably the best characterized, constituting an emerging model for pollution biomonitoring in freshwater environments (Harris et al., 2012). Indeed, the exposure of Daphnia to chemical pollutants has been shown to cause epigenetic modifications inherited throughout different flea generations (Vandegehuchte et al., 2009, 2010). Nevertheless, the amount of epigenetic knowledge in invertebrates is still pale in comparison with vertebrates. Fortunately, several recent reports have started to address different aspects related to the epigenetic

Fig. 2. Pollution biomonitoring tools. The systematic monitoring of marine pollution using microarray technologies allows to organize data into time series. Such analytical approach is useful to investigate the expression levels of individual and/or groups of relevant genes. In combination with the development of ad hoc software, the application of microarrays will help identify genes undergoing diagnostic changes in expression levels in response to specific pollutants, constituting candidate biomarkers.
mechanisms involved in environmental responses in marine invertebrates. The most relevant are described below and summarized in Table 1.

3.1. DNA methylation

So far, the bulk of the epigenetic studies developed in marine invertebrates has been essentially focused on DNA methylation (the addition of methyl groups to cytosine nucleotides), with studies on histone variants and their modifications still on the background (del Gaudio et al., 1997; Arenas-Mena et al., 2007; Schulmeister et al., 2007; Gavery and Roberts, 2010; Zemach et al., 2010; González-Romero et al., 2012b; Diaz-Freije et al., 2014; Huang et al., 2014; Zhao et al., 2014). DNA methylation at CpG islands of gene promoters constitutes a mark characteristic from vertebrate organisms (Deaton and Bird, 2011; Su et al., 2011). On the contrary, invertebrates often display DNA methylation predominantly within gene bodies, associated with gene expression regulation and alternative splicing (Su et al., 2011; Gavery and Roberts, 2013). Nonetheless, studies of DNA methylation in the oyster Crassostrea gigas suggest that gene promoter methylation can also be relevant for evolution and adaptation (Riviere, 2014).

Several studies account for the potential role of DNA methylation during environmental adaptation in marine invertebrates. For instance, it has been reported that the increase in water temperature correlates with a net increase in genome-wide methylation in the marine polychaete Spioephantes tcherniai (Marsh and Pasqualone, 2014). On the contrary, genome-wide DNA methylation analyses are possible and already available in the Pacific oyster Cr. gigas and the Zhikong scallop Chlamys farrelli (Gavery and Roberts, 2013; Su et al., 2014), establishing links between DNA hypomethylation and transcription of genes potentially linked to phenotypic plasticity and adaptation (Gavery and Roberts, 2010). These studies represent a leap forward from previous DNA methylation studies in bivalves (Wang et al., 2008; Petrovic et al., 2009), providing a very powerful platform to study its regulatory role during environmental responses and adaptation.

While the characterization of DNA methylation in marine invertebrates seems to be on its way, several relevant questions still remain unanswered. For instance, what percentage of DNA methylation persists across different marine invertebrates?, where is it localized in the genome?. Similarly, while DNA methylation has been extensively described in marine invertebrates, the specific links between specific methylation patterns (Lirman and Cropper, 2003) and particular environmental factors still remains obscure. The answers for these and many other questions will require further studies, especially those combining experimental and in silico analyses able to characterize DNA methylation levels, specific patterns and their variation across a broader range of invertebrates from diverse environments.

3.2. Histone variants and post-translational modifications

The presence of specialized histone variants in marine invertebrates was not fully known until the presence of functional H2A.X and H2AZ was unequivocally demonstrated in mussels (González-Romero et al., 2012b). Such discovery has fueled further analyses (many still on the make) suggesting that the diversity of variants in these group might be broader than previously thought, including H3.3 as well as other variants traditionally reserved for vertebrates such as macroH2A (work in progress). Concomitantly, biomonitoring studies using bivalve mussels have evidenced conspicuous modifications in the expression of some of these variants in response to genotoxic marine biotoxins. Interestingly, such changes were accompanied by modifications in histone post-translational modifications such as H3 phosphorylation (work in progress). Following in this direction, a recent report has also revealed changes in histone H3 methylation and in the expression of the Jumonji histone demethylase in embryonic and early larval stages of the Pacific oyster Cr. gigas in response to changes in external temperature (Fellous et al., 2015).

3.3. Transgenerational adaptive mechanisms

In addition to tracing relationships between environment and epigenetic modifications, one of the most interesting and challenging goals of environmental epigenetics is to elucidate how epigenetic modifications are transmitted across generations and their role in the acquisition of long term adaptations. Such objective is often pursued by studying phenotypic alterations in the offspring of individuals exposed to challenging environmental conditions. Accordingly, the effects of pre-reproductive salinity stress were evaluated in the marine tubeworm Hydroides diramphus, revealing transgenerational alterations in gamete phenotype and offspring development (Jensen et al., 2014). Similarly, transgenerational modifications have also been described in the bryozoan Bugula neritina after exposure to copper (Marshall, 2008). Nonetheless, it has been argued that phenotypic modifications must persist for

Table 1

<table>
<thead>
<tr>
<th>Species</th>
<th>Group/Common name</th>
<th>Epigenetic mechanism</th>
<th>Major finding</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroides diramphus</td>
<td>Copepod</td>
<td>Transgenerational adaptive mechanisms</td>
<td>Adaptive gamete plasticity in response to salinity stress</td>
<td>Jensen et al. (2014)</td>
</tr>
<tr>
<td>Spioephantes tcherniai</td>
<td>Polychaete</td>
<td>DNA methylation</td>
<td>Genome-wide DNA methylation in response to thermal stress</td>
<td>Marsh and Pasqualone (2014)</td>
</tr>
<tr>
<td>Chlamys farrelli</td>
<td>Mollusc (Zhikong scallop)</td>
<td>DNA methylation</td>
<td>Tissue-specific gene expression regulated by DNA methylation</td>
<td>Sun et al. (2014)</td>
</tr>
<tr>
<td>Mytilus galloprovincialis</td>
<td>Mollusc (Mediterranean mussel)</td>
<td>Histone variants and PTMs</td>
<td>Characterization of H2A.X and H2AZ</td>
<td>González-Romero et al. (2012b)</td>
</tr>
<tr>
<td>Pseudocalanus acuspes</td>
<td>Copepod</td>
<td>Transgenerational adaptive mechanisms</td>
<td>Transgenerational effect of ocean acidification in two consecutive generations</td>
<td>Thor and Dupont (2015)</td>
</tr>
</tbody>
</table>
at least two consecutive generations in order to be considered *bona fide* transgenerational effects (Feil and Fraga, 2011). That concern was addressed by a study investigating the response of the copepod *Pseudocalanus acuspes* to ocean acidification, finding evidence supporting the transmission of physiological responses to high CO$_2$ pressures through generations F1 and F2 (Thor and Dupont, 2015).

While these results are promising, further efforts are still necessary in order to unequivocally elucidate the links between environmental factors, specific epigenetic marks and the subsequent phenotypic modifications leading to long term adaptations in marine invertebrates. Such work is challenging, specially at the time of following the scent of different epigenetic marks across consecutive generations and, most importantly, at the time of doing that outside the lab (i.e., in the field). Different studies have dealt with this problem in different ways. For instance, the study of transgenerational modifications in bryozoans (Marshall, 2008) resorted to methods controlling spawning and gamete/larvae dispersion. Similarly, the control of gamete dispersion, together with the analysis of epigenetic modifications in the germline, constitute the methods most commonly used in plants (Verhoeven et al., 2010; Crevillen et al., 2014; Herrera et al., 2014). On the contrary, DNA paternity tests and isotopic labeling have been predominantly used in studies focused on mobile organisms and sessile species with high-dispersive seeds (Cuif et al., 2014; Evans et al., 2014). Overall, the combination of laboratory work with field experiments holds the key to ascertain the true biomonitoring potential of different epigenetic marks and their applicability to different environmental contexts. Although such potential will ultimately depend on the cost and expertise required for introducing epigenetics as a biomonitoring tool in the field, the low sequencing costs and the increased automation of data analyses strongly support this option.

4.1. Experimental challenges

The epigenetic knowledge currently available in marine invertebrates constitutes an exciting springboard for prospective environmental studies. However, in order to establish correlations between environmental factors and specific epigenetic states, it is still necessary to gain information about the genomic position of different epigenetic marks, in other words, the characterization of the epigenome. The recent characterization of genome-wide patterns of DNA methylation (methylome) at single base-pair resolution in the Pacific oyster (*Gaveray and Roberts, 2013*) has brought significant progress in that direction. Combined with the study of locus-specific DNA methylation using methylation-specific PCR (MSP) assays (Candiloro et al., 2011; Ku et al., 2011) coupled to real-time monitoring of PCR amplifications (Eads et al., 2000), these techniques can provide validated quantitative information useful to study environmental epigenetic responses. Complementarily, the development of antibodies specifically raised against histone variants from marine invertebrates [e.g., mussel H2AZ (González-Romero et al., 2012b)] will facilitate the identification of genes enriched in specific chromatin fractions, notably through chromatin immunoprecipitation (ChiP (O’Geen et al., 2011)) and high-throughput DNA sequencing (ChiP-Seq) techniques. These approaches represent very powerful tools for targeting proteins and PTMs specifically involved in responses to environmental stress (Li et al., 2005).

The characterization of the epigenetic role of histone variants and their PTMs represents a challenging task requiring detailed structural and functional knowledge of chromatin in marine invertebrates. These analyses are not trivial, as they involve working with two complementary epigenetic regulatory layers: First, the characterization of structural transitions resulting from the recruitment of histone variants into chromatin requires nucleosome reconstitution experiments. In this sense, previous reports have demonstrated that promoter regions of environmentally responsive genes could represent suitable templates for such purposes (González-Romero et al., 2012b). Combined with electrophoretic mobility analyses and quantitative biophysical approaches (e.g., circular dichroism and analytical ultracentrifugation), this strategy has proven to be the most powerful in ascertaining changes in nucleosome structure, helping establishing links between specific epigenetic marks and the subsequent modifications in chromatin structure and gene expression (Ausio, 2000; Thambirajah et al., 2005). Second, the nature and position of PTMs on canonical histones and histone variants must be evaluated, specially those modifications known to be involved in the maintenance of genomic integrity during genotoxic episodes [e.g., serine phosphorylation in H2AX and H3.3 (Li et al., 2005)].

4.2. Integration and interpretation of epigenetic and epigenomic data

Most traditional toxicogenomic studies aim to find biomarkers within a single group of biomolecules [e.g., transcripts, proteins, ncRNA (Hou et al., 2011; Gadhia et al., 2012)], or chemical marks [predominantly DNA methylation (Kikuchi et al., 2006; Santoyo et al., 2011; Herbstman et al., 2012; Alegria-Torres et al., 2013; Basu et al., 2013)]. Such strategy bears obvious limitations at the time of studying different epigenetic states, as these are often dictated by the combination of different types of mechanisms. Consequently, the development of powerful epigenetic biomarkers requires the simultaneous characterization of different types of marks and the subsequent integration and interpretation of the resulting data. It seems therefore that the progress of environmental epigenetics will rely heavily on the generation and integration of the different types of omic data constituting the epigenome. However, while the holistic study of the epigenome constitutes a powerful tool, it also poses new challenges, especially at the time of organizing and analyzing the immense amount of high-throughput information generated during environmental studies.

A possible strategy to tackle this problem is shown in Fig. 3. Accordingly, high-throughput omic data [methylome, transcriptome, and proteome (Robinson et al., 2009; Anders and Huber, 2010; Hardcastle and Kelly, 2010; Tarazona et al., 2011)] must be compared between organisms exposed and non-exposed to specific environmental conditions in order to identify differential gene expression patterns (Manfrin et al., 2010; Banni et al., 2011; Aguiar-Pulido et al., 2013b). The success of this approach is ultimately subject to the implementation of appropriate data mining techniques (Bock and Lengauer, 2008; Aguiar-Pulido et al., 2013a) and the organization of this information into databases, facilitating the integrative study of gene interactions and regulatory mechanisms involved in the response to specific pollutants. The Human Epigenome Consortium is at the forefront of this research, developing bioinformatic frameworks for data integration, standardization and producing reference epigenomic maps representing specific cellular conditions related to health or disease (Bae, 2013). Integrative analyses have also been recently expanded to environmental studies, as illustrated by the Comparative Toxicogenomics Database, addressing cause-effect relationships between abiotic factors and human health (Mattingly et al., 2003; Davis et al., 2013). Although heavily oriented to humans, these tools are paving the road to expand these analyses to a broader range of organisms, specially those encompassing relevance for pollution biomonitoring in the marine environment. As an example, the biomarker potential of chromatin-related genes, differentially expressed in response to marine biotoxins, is currently under investigation in bivalve molluscs (Suarez-Ulloa et al., 2013a).
5. Conclusions

The epigenetic characterization of ecologically relevant organisms is paving the road toward the characterization of cause-effect relationships between environmental factors and epigenetic mechanisms involved in immediate responses and long term adaptations. This approach, in combination with high-throughput analytical methods and the bioinformatic integration of different types of omic data, lays the foundations for developing a new generation of biomarkers of marine pollution based on dynamic epigenetic modifications. While this goal is already a reality in several vertebrate model organisms, its development in marine invertebrates still awaits further studies facilitating genome wide analyses of epigenetic marks, including DNA methylation and modifications in chromatin structure and dynamics. Most importantly, research efforts investigating the transmission of these marks across generations will be critical to unravel the role of epigenetics in adaptation.

Acknowledgments

The present work was supported by seed funds from the Biomolecular Sciences Institute (800005997) and start-up funds from the College of Arts and Sciences at Florida International University to J.M.E.-L. V.S.-U. was supported by a Graduate Assistantship from the Department of Biological Sciences at FIU. We thank three anonymous reviewers for helpful comments and suggestions on an earlier version of this work.

References

