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Chapter 1 

ASPECTS OF MUTIVARIATE ANALYSIS 

 

1.1 Introduction 

Definition (Wikipedia): Multivariate analysis (MVA) is based on the 

statistical principle of multivariate statistics, which involves observation and 

analysis of more than one statistical variable at a time.  

The objectives of scientific investigations to which multivariate methods 

most naturally lend themselves include the following. 

1. Data reduction or structural simplification 

2. Sorting and grouping  

3. Investigation of the dependence among variables 

4. Prediction 

5. Hypothesis construction and Testing 

Examples: In the real world, most data collection schemes or designed 
experiments that provide data are multivariate in nature.  Some examples of 
such situations are given below. 
 
During a survey of households, several measurements on each household 
are taken. These measurements, being taken on the same household, will 
be dependent. For example, the education level of the head of the 
household and the annual income of the family are related. 
 
During a production process, a number of different measurements such as 
the tensile strength, brittleness, diameter, etc. are taken on the same unit. 
Collectively such data are viewed as multivariate data. 
 
 

http://en.wikipedia.org/wiki/Multivariate_statistics
http://en.wikipedia.org/wiki/Variable_%28research%29
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Price of a car depends on several factors, say, year, mileage, warranty,  HP, 
model,  among many. Here year, mileage, warranty are correlated.  
 
Body fitness depends on age, height, weight, amount of exercise, food 
habits etc. Here, height and weight are related.  
 
A new drug is to be compared with a control for its effectiveness. Two 
different groups of patients are assigned to each of the two treatments and 
they are observed weekly for next two months. The periodic measurements 
on the same patient will exhibit dependence and thus the basic problem is 
multivariate in nature.  
 

1.2 Applications of Multivariate Techniques 

Some applications (among many) are describing below: 

1. Data reduction or structural simplification 

2. Sorting and grouping  

3. Investigation of the dependence among variables 

4. Prediction 

5. Hypothesis construction and Testing 

Read pages 3 and 4 for applications for each of the above categories. 

  



3 | P a g e  
 

1.2 The Organization of Data 

Arrays 

Multivariate data arise whenever an investigator, seeking to understand a 

social or physical phenomenon, selects a number p ≥ 1 of variables or 

characters to record. The values of these variables are all recorded for each 

distinct item, individual or experimental unit. 

We will use notation   xjk  to indicate the particular value of the kth variable  

that is observed on the jth item or trial. That is  

xjk =measurement of the kth variable on the jth item 

Now n measurements on p variables can be displayed as follows 

 Variable 1 Variable 2 …. Variable k … Variable p 

Item 1 x11 x12 …. x1k … xip 

Item 2 x21 x22 …. x2k … x2p 

… … … …. … … … 

Item j xj1 xj2 …. xjk … xjp 

… … … … … …  

Item n xn1 xn2 … xnk … xnp 

 

These data can be displayed as a rectangular array, Called X, of n rows   
and p columns. The array X contains all of the observations on all of the  
variables.  
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Example 1.1, Page 6:  Number of books and dollar sales 

A selection of four receipts from a university bookstore was obtained in 

order to investigate the nature of book sales. Each receipt provided, among 

other things, the total amount of each sale and the number of books sold. 

The data are given below: 

Variable 1 (dollars sales) 42   52   48   58 

Variable 2 (# of books)   4     5     4     3 

 

Then the data array X is (with 4 rows and 2 columns) 
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X  

Here x11=42, x21=52, …………, x42=3 

 

Descriptive Statistics  

Descriptive statistics describe the data. For example, mean, variance, 

standard deviation, correlations, skewness and kurtosis are descriptive 

statistics. We will discuss mostly discuss descriptive statistics that measure 

location, variation and linear association. The formal definitions of these 

quantities are given below. 

Let nxxx 11211 ,,, 
 be n measurements on variable 1. Then the sample mean 

of these measurements is 
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The second sample mean: 
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The sample variance (which measures the variability of the data, also called 

dispersion OR spread)  of n measurements for variable 1 is 
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The sample variance of n measurements for p variables  
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Note that, kkk ss 2
 and the square root of the sample variance, 

kkkk sss  2
 is known as the sample standard deviation (SD).   

Note: Mostly we will  be used SD to measure the variability as it has the 

same unit of measurement like as mean or median. 

 

Sample Covariance: Consider n pairs of measurements on each of 

variables x1 & x2 

,,, ,
2

1

22

21

12

11


























n

n

x

x

x

x

x

x
  



6 | P a g e  
 

A measure of linear association between the measurements of variables 1 

and 2 is provided by the sample covariance. The sample covariance between 

variables x1 and x2 is denoted by s12 and defined as 
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The sample covariance between   ith and kth variables is denoted by sik and 

defined as 

p1,2,...,k p,1,2,..,i   ;))((
1

1

 


n

j

kjkijiik xxxx
n

s  

This is the average product of the deviations from their respective means. 

Sample correlation coefficient (also known as Pearson’s product 

correlation coefficient)  

The sample  correlation coefficient between   ith and kth variables is 

denoted by rik and defined as 
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The sample correlation coefficient  r has the following properties: 

1. The values of r lie between -1 and +1 inclusive. 

2. r measures the strength of linear association. Thus, r=0 implies lack of 

linear association between two variables. 
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3. r=±1, a perfect linear association. 

4. r> 0 implies a tendency for one value of the pair to be large when 

other value is large and also both values to be small together. 

5. r < 0 implies a tendency for one value in the pair to be large than its 

average when other value is smaller than its average 

6. The value of rik remains unchanged if the measurements of the ith 

variable are changed to  b+ax=y jiji   and the values of the kth 

variable changed to   b+cx=y
kjjk provided that the constants a and c 

have same sign. That means, r is invariant in both location and scale of 

measurements. 

 

Arrays of Basic Descriptive Statistics 

The descriptive statistics computed from n measurements on p variables 

can be organized into arrays. 
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Sample variances and covariances 
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Sample correlation 
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Example 1.2, page 10 

The arrays   X , nS  and R for bivariate data in Example 1.1 are given below 
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1     0.36-
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R  

r12=-0.36, weak negative linear relationship between two variables X1 and 

X2. 

 

Graphical Techniques: 

Scatter Plot: Using SPSS we obtain the following scatter plot between 

variables 1 & 2. 

Variable 1 (x1):        3     4     2    6    8    2     5 

Variable 2 (x2):        5    5.5   4    7   10   5    7.5 
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Figure 1.1: A scatter plot between variables x1 and x2 

Using SPSS we obtain, r12=0.96. Strong correlation between variables x1 & 

x2. The scatter diagram  (Figure 1.1) gave the same impression about the 

strong  linear relationship between variables x1 & x2. 

 

Example 1.4 (A scatter plot for baseball data) 

           Table 1.1: 1977 Salary and Final Record for the National League East 

 

 

 

 

 

 

 

Team Player payroll 
(x1) 

Won-lost percentage 
(x2) 

Philadelphia 3497900 0.62 

Pittsburg 2485475 0.59 

St. Louis 1782875 0.51 

Chicago 1725450 0.5 

Montreal 1645575 0.46 

New York 1469800 0.4 
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The scatter plot (using SPSS) 

 

Figure 1.4: Salaries and won-lost percentage Table 1-1 (page 14) 

Example 1.6, page 17: A zoologist obtained measurements on n=25 lizards. 

The weights or mass is given in grams while the snout-vent length (SVL) and 

hind limb span (HLS) are given in millimeters. The data are displayed in 

Table 1.3. 

Table 1.3: Lizard Size Data 

Lizard Mass SVL HLS 

1 5.5 59 113.5 

2 10.4 75 142 

3 9.2 69 124 

4 9 67.5 125 

5 7.1 62 129.5 

6 6.6 62 123 

7 11.3 74 140 

8 2.4 47 97 

9 15.5 86.5 162 

10 9 69 126.5 

11 8.2 70.5 136 

12 6.6 64.5 116 

13 7.6 67.5 135 
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14 10.1 73 136.5 

15 10 73 135.5 

16 10.1 77 139 

17 7.6 61.5 118 

18 7.73 66.5 133.5 

19 12 79.5 150 

20 10 74 137 

21 5.1 59.5 116 

22 9.2 68 123 

23 12.1 75 141 

24 7 66.5 117 

24 6.9 63 117 

 

 

Using Minitab 
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3D Scatterplot of Mass vs HLS vs SVL
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From Figures 1.6 and 1.7, we can see that most of the variation is scatter 

about a one-dimensional straight line. 

1.4 Data Display and Pictorial Representations 

Consider data in Example 1.6 and  do a matrix plot, which is a linking 

multiple two-dimensional plots. 

Correlation Matrix 

Correlations 

 Mass SVL HLS 

Mass Pearson 

Correlation 

1 .961** .916** 

Sig. (2-tailed)  .000 .000 

N 25 25 25 

SVL Pearson 

Correlation 

.961** 1 .938** 

Sig. (2-tailed) .000  .000 

N 25 25 25 

HLS Pearson 

Correlation 

.916** .938** 1 

Sig. (2-tailed) .000 .000  

N 25 25 25 

*. Correlation is significant at the 0.01 level (2-tailed). 
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1.5 Distance 

If we consider the point P=(x1, x2) in the plane , the straight line distance, 

d(O, P), from P to the origin O=(0,0) is according to the Pythagorean theorem 

is given by 

2

2

2

1),( xxPOd 
 

The situation is illustrated in Figure 1.19 (page 30).  

 

 



14 | P a g e  
 

In general, if the point  P has p coordinates so that P=(x1, x2, ...,xp),  the 

straight line distance from P to origin O=(0,0,..,0) is 

xxxxxxPOd p  '),( 22

2

2

1 
 

All points (x1, x2…xp) that lie a constant squared distance, such as c2, from 

the origin satisfy the following equation 
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The straight line distance between two arbitrary points P and Q with 

coordinates P=(x1, x2, ..,xp),    and Q=(y1, y2,...,yp),    is given by 

yxyxyxyxQPd pp  22
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                          (1-13) 

Using (1-13), we see that all points which have coordinates (x1, x2) and are a 

constant squared distance c from the origin must satisfy 

                                
2
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x
                              (1-14) 

Equation (1-14) is the equation of an ellipse centered at the origin whose 

major and minor axes coincide with the coordinate axes.  This general case 

is shown in Figure 1.21, page 32.  
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Example 1.14, page 32: Calculating a statistical distance 
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All points (x1, x2) that are a constant distance 1 from the origin satisfy the 

equation  
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The coordinates of some points a unit distance from the origin are 

presented in the following Table 

Coordinates: (x1, x2)   Distance: 1
14
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A plot of the equation   1
14

2

2

2
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  is given below 

 

 

The expression in (1-13) can be generalized to accommodate the calculations 

of statistical distance from an arbitrary point P=( x1, x2) to any fixed point 

Q=(y1, y2).  If we assume that the coordinate variables vary independently 

on one another, the distance from P to Q is given by 
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Let the points P and Q have p coordinated such that P=(x1, x2,...,xp) and 

Q=(y1, y2, …,yp). Suppose Q is a fixed point [it could be O=(0, 0, …, 0)] and 

the coordinate variables vary independently of one another. Let s11, 

s22,….,spp be sample variances constructed from n measurements on x1, x2, 

…, xp respectively. Then the statistical distance from P to Q is,  
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