Insect-Plant Interactions

Experimental demonstrations of ant protection, ants have been observed attacking insect herbivores. In Nigeria, *Pachysima* ants occupy *Barteria* plants, resulting in more vegetative growth and less damage to shoot tips than in unoccupied plants. The ants were observed to attack plants adjacent to their *Barteria* and to clean the large leaves of debris and epiphyllae, the first suggestion of the importance of "housekeeping" by ants benefitting the plants. Letourneau was the first to discover the importance of nonaggressive ants in plant protection: *Pheidole bicorns*, which are small and sluggish ants, were previously thought to function only in nutrient procurement of the myrmecophytic *Piper* spp. Her experiments demonstrated that the ants clean the surface of leaves from insect eggs and early instar larvae, thereby significantly reducing damage from foliage-feeding insects.

When studies have been conducted in sufficient detail, it is frequently revealed that some ant species are better than others in protecting plants. The eight ant species associated with *Calathea* differed greatly in the magnitude of their beneficial effects on seed production; the smallest ants (*Wasmannia auropunctata*) were the best defenders, and plants with these ants set the greatest amount of seed (more than twice as much as plants defended by *Pheidole gouldii*). While the four species of ants commonly associated with *Inga densiflora* and *I. punctata* were all capable of removing some herbivores, *Pheidole biconstricta* was the most effective overall against all the major guilds of herbivores on the plants. Of four ant species visiting extraloral nectaries on reproductive structures of the orchid *Schomburgkia tibicinis*, the larger species (*Ectatomma tuberculatum* and *Camponotus rectangularis*) were best at reducing damage to inflorescences by beetles and thus increasing fruit set.

Preliminary observations suggest that a loose association exists between the aggressive bullet ant *Paraponera clavata* and *Pentaclethra macroloba*; the trees provide suitable nest sites for the ants and a food source in extraloral nectar; the ants provide some amount of protection by collecting herbivorous insects. In some systems, ants protect plants against other ants. *Azteca* ants deter *Atta* defoliators from citrus trees in Trinidad.

7. Trade-Offs with Other Defenses

Once ant defense has been demonstrated, a related hypothesis is engendered: are there evolutionary trade-offs between ant defense and other types of ant/herbivore defense? The diversion of resources from one type of defense to another may be termed a trade-off. Trade-offs could occur between types of defenses because plants have finite resources, and natural selection should act to optimize the pattern of resource allocation.

A comparison of ant acacias and nonmyrmecophytic acacias revealed the species not protected by ants to have greater chemical protection, though not for all types of chemical defense (D. Seigler personal communication). Bentley observed that when *Bixa orellana* occur at higher elevations where ants are not abundant, the sepal nectaries are not evident and the sepals are much thicker, suggesting compensation for lack of ant defense with mechanical protection of ovules and developing seeds.

The bracken fern *Pteridium aquilinum* has nectaries that function primarily on developing fronds, providing potential ant protection of tender leaf tissue. Mature, fully hardened leaves do not have functional nectaries; perhaps mechanical defense makes ant protection less important. There is an obvious trade-off in chemical defenses as fronds age: young fronds have cyanogenic glycosides, whereas mature fronds have high levels of tannins.
The same species of *Inga* that are protected by ants in the lowland wet forest occur at higher elevations without ant defense; higher elevation *Inga* have more phenolic compounds in their foliage than their lower elevation counterparts. Alternative defenses do not fully compensate for the lack of ant defense, however, as upland trees sustain more damage than lowland trees.202

A comparison of the defenses of *Ipomoea* species (potential chemical defense from indole alkaloids, potential biotic defense from nectaries, and potential mechanical defense from pubescence and woodiness) gave no evidence of trade-offs.329 Despite this negative result, it is certain that the generalized nature of ant defense is in some systems superior to any combination of alternative defenses.206

F. OTHER PREDATORS AND PARASITOID FEEDING AT NECTARIES

The importance of extraloral nectar in supporting predators (in addition to ants) is well documented for cultivated cotton.3,302,356 Many arthropod predator species are much more abundant on cotton with extraloral nectaries than on nectarless cotton.1 Lacewings and several coccinellid species were observed feeding at peach leaf nectar.291 Floral nectaries in wind-pollinated *Croton suberosus* function to attract *Polistes* wasp predators of the herbivores.96 Overall, however, less work has been directed to nonant predators than to parasitoids supported by extraloral nectaries.

Adult parasitoids require carbohydrates and water to achieve maximum longevity.120 The short mouthparts of parasitic Hymenoptera limit their use of nectar to sources that are easily accessible, such as unspecialized flowers or extraloral nectar.64 Sixty species of Ichneumonidae fed at the extraloral nectaries of faba bean, *Vicia faba*.65

The foliar nectaries of *Byttnera aculeata* (Sterculiaceae) attract a variety of chalcid wasps, in addition to *Ectatomma* ants, thereby serving as an "insectary plant", affecting the insect community beyond serving as a host for its own herbivores.152 Censuses of visitors to *Byttnera* nectaries reveal ants and parasitic Hymenoptera to be about equally frequent at the nectaries; ants spend more time at nectaries than in patrolling the plants; and seven species of parasitoid Hymenoptera, including some collected from nectaries, were reared from leaf-feeding herbivores. Hespenheide152 suggests that these plants may benefit more from parasitoids visiting its nectaries than ants. A variety of parasitic wasps in the families Braconidae and Chalcidae were observed feeding at extraloral nectary analogs, insect-induced wounds, on stems of *Baccharis sarothroides* in Arizona.254

At sites where ants are not present in great numbers, the nectaries can serve as attractants to parasitoids. Legume trees in the genus *Inga* have extraloral nectaries and ant protection in Costa Rican lowlands; the same species of trees, occurring at upland sites where ants are scarce, have nectaries visited by parasitoids, and a significantly greater proportion of caterpillars from upland trees are parasitized than in the lowlands.202

In a study of vetches in England,208 the evidence of parasitoid abundance from baiting did not demonstrate clear differences between the subsites where overall ant abundance was high. Data on parasitoids at baits may not provide an accurate estimate of parasitoid activity, because visits by flying insects are often shorter than those of ants. It is likely that once ants are at a bait, parasitoids will not visit that bait or will be chased away if they try. More solid evidence of the presence of parasitoids comes from their actual capture at nectaries and of parasitization of herbivore larvae. In the same study, there was evidence that ants kept parasitoids away and caused the reduced levels of parasitization of herbivore larvae in the pods at sites where ants were abundant.
IV. INTERACTIONS BETWEEN NECTARY VISITORS AND EFFECTS ON PLANTS

A. ANT-TENDED INSECTS — INSECT ANALOGS OF EXTRAFLORAL NECTARIES

A variety of insects that feed on plants exude secretions and are tended by ants. Many Homoptera excrete honeydew as they feed on phloem sap, including aphids, psyllids, scale insects, and treehoppers. Lepidopteran larvae of the families Lycaenidae and Riodinidae have specialized nectar glands with associated eversible tentacles. A hypothesis for the evolution of extrafloral nectaries proposes that nectaries can divert the ants from tending Homoptera, thereby reducing the recruitment of ant-tended Homoptera and damage to plants from these herbivores, and selecting for extrafloral nectar production by the plant. They reason that nectar collection does not require as much energy from ants as Homoptera husbandry does; therefore, if extrafloral nectar provides an equivalent resource with less work, the Homoptera may be abandoned. However, a great many species with extrafloral nectaries also have Homoptera tended by ants (e.g., Populus and Vicia). A survey of Homoptera and host plants, divided into hosts with and without extrafloral nectaries, might reveal interesting patterns. If species with nectaries have markedly fewer ant-tended Homoptera, the Becerra and Venable theory would have some support. It may be, however, that species with extrafloral nectaries have more than their share of Homoptera, as might be predicted if the Homoptera are exploiting “enemy free space.”

The presence of ants stimulates the production of honeydew from tended insects. Ant attendance increased honeydew excretion by Aphis craccivora more than fivefold and altered the posture of the aphid larvae as well. Exclusion of Formica rufa from Periphyllus testudinaceus aphids on branches of host trees in Britain resulted in a marked drop in the numbers of aphids.

In some cases, ants tending herbivores that are insect analogs of extrafloral nectaries can provide protection for host plants from other herbivores and increase plant fitness over conspecifics without tended herbivores. In order for the outcome of this interaction to be positive with respect to plant fitness, the ant-tended herbivore should not be the primary herbivore of the plant, and the ants should be effective against nonhomopteran herbivores. Crematogaster africana tending Homoptera on Tapinanthus, a mistletoe that grows on cocoa in Ghana, protect the mistletoe from other herbivores and allow greater shoot growth on plants with Homoptera and ants. Stout discovered Homoptera living in association with Myrmelachista ants inside hollowed-out stems of lauraceous understory trees in Costa Rica, and after observing the swift removal of insect eggs placed on young stems and leaves by the ants, hypothesized that the benefits to the plant in protection from herbivory by the ants outweigh the losses incurred by mealy-bug feeding. Formica ants tending Publilia treehoppers protect stems of goldenrod, Solidago altissima, from defoliation by chrysomelid beetles (Trirhabda spp.), resulting in greater seed production from plants with ants. Fritz found no apparent harm or benefit to black locust in having Vanduzea arquata treehoppers and attendant Formica subsericea ants, because additional predators were important in the ant-herbivore interaction: while ants reduced adult density and oviposition of a leaf-mining beetle, Odontota dorsalis, they also excluded an important hemipteran predator of these beetles, Nabicula subcoleoptrata, indirectly providing protection for the beetle larvae from this predator. Resident ants in myrmecophytic Macaranga in Southeast Asia tend scale insects inside the stems, and aid their host plants by removing young herbivores. In addition, they cleared them of other pioneer plant species by biting off foreign plant parts that come in contact with host trees.
More typically, ants tending herbivores that secrete nectar decrease the fitness of the host plant. On Aldabra Atoll, the introduced coccid, *Icerya seychellae*, utilizes a wide variety of plant taxa and is tended by small numbers of various ant species during the day, and by large numbers of *Camponotus maculatus* during the night; ants reduce the numbers of a dispid scale predator, *Chilicoccus nigritus*, providing protection for the *Icerya* scale; larger trees had heavier scale infestations and decreased shoot vigor. The interaction between ants and membracid treehoppers *Sextius virescens* has a negative effect on growth and seed set of Australian *Acacia decurrens*, a host plant with extrafloral nectaries. Ants tending mealybugs on *Schomburgkia tibicinis* increase peduncle damage and inflorescence death, and reduce flowering and fruit set of the orchid.

In a complex interaction, ants tending *Hilda patruelis* (Hemiptera: Tettigometridae) on fig-producing branches of *Ficus sur* in South Africa reduce seed predation and parasitism of pollinating wasps by repelling nonpollinating wasps from the figs. The net effect of the homopteran and its associated ants is beneficial for fig trees, as parasitism of the pollinator is significantly reduced wherever ant densities are high.

B. ANTS VS. PARASITOIDS AND OTHER PREDATORS

Negative interactions between ants and parasitoids or predators of herbivores have been demonstrated in various nectar reward situations. In systems with extrafloral nectaries, and even more in extrafloral nectary analog situations, ants have been shown to protect certain herbivores (specialized either for ant resistance or for ant associations) from their enemies.

Herbivores that feed internally on plants with nectaries bear some resemblance to herbivores that have honeydew glands themselves, or form structures that exude honeydew, and may benefit in a similar way from the presence of ants at the secretions, since the aggressive behavior of ants toward other plant visitors will serve to drive away parasitoids. Cynipid gall wasps in Californian oaks are protected from their parasitoids by Argentine ants feeding on honeydew produced by the galls. Caterpillars eating leaves of lowland *Inga* trees (which are protected by ants visiting their foliar nectaries against many herbivores) were parasitized much less frequently than their higher elevation counterparts on *Inga* without ants. Concealed feeders on *Vicia sativa* were parasitized less frequently in areas of high ant activity.

Lycaenid caterpillars have glands on their bodies that exude honeydew, and tending ants that take this exudate protect the larvae from braconid wasp parasitoids. The larvae of the lycaenid butterfly, *Jalmenus evagoras*, are sometimes heavily parasitized by a braconid wasp, despite the presence of swarms of small attending *Iridomyrmex* ants. Field experiments demonstrated, however, that without the attendant ants, parasitism and predation of the immature stages are so intense that populations would not survive. Females use ants as an ovipositional cue, and the resulting local distribution of the butterfly is strongly influenced by the distribution of ants on their host plants.

Many Homoptera derive benefits from their association with ants. Nymphs of *Vanduzea arquata*, a treehopper that feeds on the sap of black locust in Maryland, are protected from their predators by aggressive *Formica subsericia*. The saltbush scale, *Pulvinaria maskelli*, is tended by *Iridomyrmex*, which protect the scale from predators and climatic extremes, and enhance the damage suffered by the Australian host plant, *Atriplex vesicaria*. Both aphid and membracid herbivores of New York ironweed (*Vernonia noveboracensis*) are protected by ants from their coccinellid and chrysopid larvae predators, but the aphids benefit more from association with *Tapinoma* ants, and membracids benefit more from association with *Myrmica* species. In Arizona, *Formica*
altipeters tend the membracid Publilia modesta, and during some seasons they protect the nymphs from a predatory salticid spider. Ants aggressively protect green scale from their coccinellid predators in coffee plantations. More aggressive ant species provide better protection for soft scales and mealybugs against predators and parasitoids. The continuous day-and-night tending of Homoptera in the tropics may be especially important in protection from nocturnally feeding spider predators.

Of obvious importance to the interaction between ants and the other predators and parasites of herbivores is whether the herbivores are surface feeders or are concealed in various ways. For plants with extraloral nectaries, ants are potentially effective at removing all external herbivores, except for those that are specialized to avoid ant defense or to benefit from it themselves (the various honeydew producers discussed above). Insects without the specializations to produce honeydew may also gain protection from ants tending extraloral nectaries by living inside the plant tissues (in developing fruits, tied leaves, boring in stems, or occupying galls). The architectural complexity of plants is correlated with the diversity of herbivore species that utilize the plants at the next two trophic levels, parasitoid species richness is determined largely by hostplant architecture and herbivore feeding niche. It would be of great interest to contrast herbivores from host plants with and without extraloral nectaries to see if the richness of herbivores and parasitoids is influenced by the presence or absence of nectaries. I predict that plant species with extraloral nectaries will have greater numbers of concealed or internal feeders, and may have lower parasitoid species richness as a consequence.

V. CONCLUSIONS

The myriad relationships between insects and plants mediated by extraloral nectaries range from simple opportunism to mutual benefit and on to complex multiple interactions (both positive and negative). It is time now for biologists specializing in various groups of plants and arthropods involved in such interactions to test some hypotheses and to make generalizations where applicable.

The discoveries that herbivory can affect both the volume and composition of extraloral nectar indicates a potential avenue of investigation for inducible defenses in plants with extraloral nectaries. Does increased nectar volume result in greater visitation by insects? Does this result in more biotic protection against herbivores? Are increases in certain amino acids influencing visitation by various guilds of insects? Does this increase plant protection?

Extraloral nectaries involved in pollination should be under selective pressures, as are floral nectaries, but some considerations differ. Do extraloral nectaries respond to visitors by secreting more nectar? Or, like some floral nectaries, do they only produce a finite amount of nectar, not changing if visited?

We need to examine the distribution of honeydew-producing Homoptera on plants with and without extraloral nectaries. Do plants with extraloral nectaries have fewer Homoptera than congeners without? Is it possible that extraloral nectaries were selected as ways of eliminating ant-tended Homoptera from plants? Or do Homoptera exploit plants with extraloral nectaries as enemy-free space, like ant-tended Lepidoptera do?

It would be of great interest to look at food webs based on extraloral nectar. Nectar drinking is a special type of herbivory, yet the role of nectar in amplifying insect abundance in agricultural systems has been noted many times. Which of these insects are directly supported by nectar, or by insects that drink the nectar?
Whether or not a plant species has extrafloral nectaries may influence the structure of the herbivore community that feeds upon it. Do plant species with extrafloral nectaries have fewer herbivores than congeners without nectaries? Or perhaps a greater proportion of herbivores of certain guilds (e.g., concealed feeders)? And what about diversity of higher trophic levels (e.g., parasitoids) on congeners with and without nectaries?

ACKNOWLEDGMENTS

I thank Robert Pemberton for his constructive comments on an earlier draft of this review. Roger Gunther for his input, and Elizabeth Bernays for her skilful editing. L. Scott Quackenbush furnished bibliographic advice, and Nancy Koptur, Esq., provided invaluable clerical assistance.

REFERENCES

Insect-Plant Interactions

82. Damstra, K. S. J., Ant activity on extrafloral nectaries of Kigelia africana, abstract for Ant-Plant Symposium, Oxford University, July 6 to 8, 1989.

89. Degroot, A. P., Protein and amino acid requirements of the honeybee (Apis mellifera L.), Comp. Physiol. Ecol., 3(2/3), 1, 1953.

120. Flanders, R. V. and Oatman, E. R., Laboratory studies on the biology of Orgilus jenniae (Hymenoptera: Braconidae), a parasitoid of the potato tuberworm, Phthorimaea operculella (Lepidoptera: Gelechiidae), Hilgardia, 50(8), 1, 1982.

231. Lukefahr, M. J., Effects of nectarless cottons on populations of three lepidoplo-

240. McKay, D., Interaction of the ant-plant Leonardoxa africana (Caesalpinioideae) with its obligate inhabitants in a rainforest in Cameroon, Biotropica, 16, 81, 1984.

252. Murphy, D. D., Nectar sources as constraints on the distribution of egg masses by the checkerspot butterfly, Euphydryas chalcedona (Lepidoptera: nymphalidae), Environ. Entomol., 12(2), 463, 1983.

256. Newbery, D. M. C., Interactions between the coocid, Icerya seychellarium (Westw.) and its host tree species on Albadora Atoll, II. Scaevola taccada (Gaertn.) Roxb., Oecologia (Berl.), 46, 190, 1980.

295. Ricks, B. L. and Vinson, S. B., Feeding acceptability of certain insects and various water soluble compounds to two varieties of the imported fire ant, J. Econ. Entomol., 63(1), 145, 1970.

315. Shahjahani, M., Effect of diet on the longevity and fecundity of the adults of the tachinid parasite Trichopoda pennipes pilipes, J. Econ. Entomol., 61, 1102, 1968.

336. Tempel, A. S., Bracken fern (Pteridium aquilinum Kuhn) and nectar-feeding ants: a non-mutualistic interaction, Ecology, 64(6), 1411, 1983.

345. Vansell, G. H., Nectar secretion in poinsettia blossoms, J. Econ. Entomol., 33, 409, 1940.