Periodic Table

Categorizations of Elements

- Metalloids: boron (B), silicon (S), arsenic (As), germanium (Ge), antimony (Sb), tellurium (Te), and polonium (Po)
- Metals: everything to the left of the metalloids
- Nonmetals: everything that is not a metal
- Noble or inert gases: column on the right
- Halogens: column next to noble gases

Oxidation State

Oxidation number (oxidation state)

• An electrical charge assigned by a set of prescribed rules.

Elements have valence shells

- Noble gases: completely filled shells (stable)
- Non-noble elements: achieve a more stable shell by adding/losing electrons

```
For example, carbon (C) can gain four
electrons (-4 valence), or lose four
(+4 valence) to reach the neon (Ne)
valence state—or it can lose two (+2
valence) to reach the beryllium (Be)
valence state.
```

Nitrogen (N) the most notable exception, can have any valence in its row (+5 to -3, but never zero).

Some valence states to remember are:

- hydrogen (H) column: +1
- beryllium (Be) column: +2
- boron (B) column: +3
- fluorine (F): -1
- oxygen (O): -2
- carbon (C): can be +2, +4, or -4

6-2a

Chemistry Oxidation State

Example 1 (EIT8):

Example 29.5

What are the oxidation numbers of all the elements in the chlorate (ClO_3^{-1}) and permanganate (MnO_4^{-1}) ions?

(solution)

For the chlorate ion, the oxygen is more electronegative than the chlorine. Therefore, the oxidation number of oxygen is -2. In order for the net oxidation number to be -1, the chlorine must have an oxidation number of +5.

For the permanganate ion, the oxygen is more electronegative than the manganese. Therefore, the oxidation number of oxygen is -2. For the net oxidation number to be -1, the manganese must have an oxidation number of +7. 6-2b1

6-2b2

Chemistry Oxidation State

```
Example 2 (FEIM):
```

The valence (oxidation state) of manganese in potassium permanganate, $KMnO_4$ is:

- (A) +7 (B) +5
- (C) +4
- (D) +3

Oxygen has only a –2 oxidation state, and K has an oxidation state of +1. Since there is no charge on the molecule, the Mn must have an oxidation state of +7.

Therefore, (A) is correct.

Professional Publications, Inc.

Sb

Gold	=	Au
Iron	=	Fe
Lead	=	Pb
Mercury	=	Hg
Potassium	=	K
Silver	=	Ag
Sodium	=	Na
Tin	=	Sn
Tungsten	=	W

=

Chemical Names There are only ten elements where the symbol does not start with the element's first letter; these are:

Antimony

Chemistry Inorganic Chemistry

Definitions

- atomic number
- carbon 12
- atomic weight
- isotope

6-3b

Chemistry Inorganic Chemistry: Moles

Mole

- 1 mol of carbon 12 = 12 g
- number of atoms/molecules in a mole = 6.02 × 10²³ (Avogadro's number)
- 1 mol of any gas at STP occupies 22.4 L

Example 1 (FEIM):

How many electrons are in 0.01 g of gold?

The atomic weight of gold is 196.97 g/mol, so 0.01 g of gold is 5.077 \times 10⁻⁵ mol.

 $(5.077 \times 10^{-5} \text{ mol}) \left(6.02 \times 10^{23} \, \frac{\text{atom}}{\text{mol}} \right) = 3.057 \times 10^{19} \, \text{atoms}$ $(3.057 \times 10^{19} \, \text{mol}) \left(79 \frac{\text{electrons}}{\text{atom}} \right) = 2.42 \times 10^{21} \, \text{electrons}$

6-4a1

Chemistry Inorganic Chemistry: Moles

```
Example 2 (FEIM):
```

Which of the following is NOT approximately equal to a mole? (A) 22.4 L of nitrogen (N₂) gas at STP (B) $6.02 \times 10^{23} O_2$ molecules (C) 16 g of O₂ (D) 2 g of H₂

Oxygen has an atomic weight of 16 g/mol. However, it is diatomic, meaning there are two oxygen atoms in every oxygen molecule. So it would take 32 g of O_2 to make a mole.

```
Therefore, the answer is (C).
```

6-4a2

Chemistry Inorganic Chemistry: Moles

Definitions

- gram-mole
- mole fraction

Example (FEIM): Atomic weights are taken as 75 g for arsenic, 16 g for oxygen, and 12 g for carbon. According to the equation $As_2O_3 + 3C \rightarrow 3CO + 2As$, the reaction of 1 gmol of As_2O_3 with carbon will result in the formation of:

Each gram-mole of As_2O_3 will result in 2 gmol of As. Because each gram-mole of As weighs 75 g, then 2 gmol of As weighs 150 g. Therefore, (D) is correct. 6-5

Chemistry Inorganic Chemistry: Equivalent Weight

Equivalent weight is the molecular/atomic weight divided by the electrons exchanged in a chemical or electro chemical reaction.

Example (EIT8):

Example 29.3

(solution)

What are the equivalent weights of the following compounds?

(a) Al in the reaction

 $\mathrm{Al}^{+++} + 3\mathrm{e}^{-} \longrightarrow \mathrm{Al}$

(b) H_2SO_4 in the reaction

 $H_2SO_4 + H_2O \longrightarrow 2H^+ + SO_4^{--} + H_2O$

(c) NaOH in the reaction

 $NaOH + H_2O \longrightarrow Na^+ + OH^- + H_2O$

(a) The atomic weight of aluminum is approximately 27. Since the change in the oxidation number is 3, the equivalent weight is 27/3 = 9.

(b) The molecular weight of sulfuric acid is approximately 98. Since the acid changes from a neutral molecule

to ions with two charges each, the equivalent weight is 98/2 = 49.

(c) Sodium hydroxide has a molecular weight of approximately 40. The originally neutral molecule goes to a singly-charged state. Therefore, the equivalent weight is 40/1 = 40.

6-6

Inorganic Chemistry: Reactions/Equations

```
Example 1 (FEIM):
```

```
Balance the equation AI + H_2SO_4 \rightarrow AI_2(SO_4)_3 + H_2.
```

(left) 1 Al \rightarrow 2 Al (right), so multiply the Al on the left by 2.

(left) 1 SO₄ \rightarrow 3 SO₄ (right), so multiply the H₂SO₄ on the left by 3.

As a result, there are now $3 H_2$ on the left, so multiply the H₂ on the right by 3.

 $2\mathsf{AI} + 3\mathsf{H}_2\mathsf{SO}_4 \twoheadrightarrow \mathsf{AI}_2(\mathsf{SO}_4)_3 + 3\mathsf{H}_2$

Example 2 (FEIM):

What is the smallest possible whole-number coefficient for Na_2CO_3 when the following reaction is balanced?

```
Na_2CO_3 + HCI \rightarrow NaCI + H_2O + CO_2
```

There are 2 H on the right, so multiply the HCl on the left by 2. Now, there are 2 Cl on the left, so multiply the NaCl on the right by 2. Now the equation balances, and the coefficient of Na_2CO_3 is 1. The complete equation is:

 $Na_2CO_3 + 2HCI \rightarrow 2NaCI + H_2O + CO_2$

6-7a2

Inorganic Chemistry: Reactions/Equations

```
Example 3 (FEIM):
```

Balance the reaction $FeS_2 + O_2 \rightarrow Fe_2O_3 + SO_2$. (left) 1 Fe \rightarrow 2 Fe (right), so multiply FeS₂ by 2. Now, (left) 4 S \rightarrow 1 S (right), so multiply SO₂ by 4. So far, we have: $2FeS_2 + O_2 \rightarrow Fe_2O_3 + 4SO_2$ (left) 2 O \rightarrow 11 O (right), so multiply the O₂ on the left by 11 and the others on the right by 2. But now there are 2 Fe on the left and 4 Fe on the right, so a final multiplication balances the equation. $4FeS_2 + 11O_2 \rightarrow 2Fe_2O_3 + 8SO_2$

6-8a

Inorganic Chemistry: Oxidation-Reduction Reactions

Oxidation An element of molecule loses electron(s).

Reduction An element of molecule gains electron(s).

Example:

For the following reaction, what is oxidized? What is reduced? What is the oxidizing agent? What is the reducing agent?

 $2HNO_{_3} + 3H_{_2}S \rightarrow 2NO + 4H_{_2}O + 3S$

The S has an oxidation state of -2 on the left and 0 on the right, so it was oxidized. The N has an oxidation state of +5 on the left and +2 on the right, so it was reduced. The oxidizing agent is what is reduced. The HNO₃ releases an NO₃⁻ ion that is reduced, so this is the oxidizing agent. The reducing agent, which is what is oxidized, is the H₂S.

Inorganic Chemistry: Oxidation-Reduction Reactions

To balance O-R reactions:

- 1. Write the unbalanced equation.
- 2. Assign oxidation numbers to all elements.
- 3. Find the elements that change oxidation state.
- 4. Balance so there is the same number of electrons on both sides for oxidized and reduced elements.
- 5. Balance the remainder of the equation as a simple reaction.

Example:

How many $AgNO_3$ molecules are formed per NO molecule in the reaction of silver with nitric acid?

- 1. The unbalanced reaction is $Ag + HNO_3 \rightarrow AgNO_3 + NO + H_2O$.
- 2. The oxidation number of Ag in $AgNO_3$ is +1 because 3 O has an oxidation number of -6 and N can have a maximum oxidation number of +5. The N in HNO_3 has an oxidation number of +5 (same as above). The N in NO has an oxidation number of +2.
- 3. Therefore, each Ag is oxidized by losing 1 e⁻, and each N in each NO is reduced by gaining 3 e⁻.
- 4. So there must be 3 $AgNO_3$ created for every NO created.

Inorganic Chemistry: Stoichiometry

Stoichiometry

The mass of the reactants is used to find the mass of the products or vice versa.

- 1. Balance the equation.
- 2. Find atomic or molecular weights of everything in the equation.
- 3. Combining weights are proportional to the product of the molecular weights and the coefficients.

Example 29.10

Caustic soda (NaOH) is made from sodium carbonate (Na_2CO_3) and slaked lime $(Ca(OH)_2)$ according to the given reaction. How many kilograms of caustic soda can be made from 2000 kg of sodium carbonate?

(solution)

$$Na_2CO_3 + Ca(OH)_2 \longrightarrow 2NaOH + CaCO_3$$

molecular

weights	106	74	2×40	100
given data	2000 kg		X kg	

The simple ratio used is

$$\frac{\text{NaOH}}{\text{Na}_2\text{CO}_3} = \frac{80}{106} = \frac{X}{2000}$$

Solving for the unknown mass, X = 1509 kg.

Professional Publications, Inc.

6-9

Professional Publications, Inc.

Chemistry

Gases in Liquids

Gases can dissolve in liquids.

Solids in Liquids

• Solids can dissolve in liquids.

Example (FEIM):

1 L of water will absorb 0.043 g of O_2 when in contact with pure O_2 at 20°C and 1 atm, or 0.19 g of N_2 when in contact with pure N_2 at 20°C and 1 atm. Air contains 20.9% O_2 by volume, and the rest is N_2 . What masses of O_2 and N_2 will be absorbed by 1 L of water in contact with air at 20°C at 1 atm?

$$m_{0_2} = (0.209) \left(0.043 \frac{\text{g}}{\text{L}} \right) = 0.009 \,\text{g/L}$$

$$m_{_{N_2}} = (1 - 0.209) \left(0.19 \frac{g}{L} \right) = 0.150 \text{ g/L}$$

6-10a

Professional Publications, Inc.

Chemistry

Solutions

Unit of concentration:

- Molarity number of gmol/L of solution
- Molality number of gmol/1000 g of solution
- Normality number of gram-equivalent weight/L of solution
- Normal solution gram-equivalent weight/L of solution

Example (EIT8):

Example 29.12

A solution is made by dissolving 0.353 grams of Al₂(SO₄)₃ The normality is in 730 grams of water. Assuming 100% ionization, what is the concentration expressed as normality, molarity, and mg/l?

(solution)

The molecular weight of $Al_2(SO_4)_3$ is

MW = (2)(26.98) + 3[32.06 + (4)(16)] = 342.14

The equivalent weight is 342.14/6 = 57.02

The number of gram equivalent weights used is

 $0.353/57.02 = 6.19 \times 10^{-3}$

The number of liters of solution (same as the solvent volume if the small amount of solute is neglected) is 0.73.

$$N = \frac{6.19 \times 10^{-3}}{0.73} = 8.48 \times 10^{-3}$$

The number of moles of solute used is 0.353/342.14 = 1.03×10^{-3} .

The molarity is

$$M = \frac{1.03 \times 10^{-3}}{0.73} = 1.41 \times 10^{-3}$$

The number of milligrams is 0.353/0.001 = 353.

$$mg/l = \frac{353}{0.73} = 483.6$$

6-10b

FERC

Chemistry Solutions

Boiling and Freezing Points

• Boiling-Point Elevation:

$$\Delta T_b = mK_b$$

= $\frac{m_{\text{solute,in g}}K_b}{(\text{MW})m_{\text{solvent,in kg}}}$ [increase] 39.3

• Freezing-Point Depression:

Example (EIT8):

Example 29.13

4.2 g of a non-ionizing solute was dissolved in 112 g of acetone ($K_b = 1.71^{\circ}$ C/m, $T_b = 55.95^{\circ}$ C). The boiling point of the solution increased to 56.7°C. What is the approximate molecular weight of the solute?

 $\Delta T_f = -mK_f$

-m_{solute}, in

(solution)

From Eq. 29.16,

$$MW = \frac{m_{\text{solute, in g}} \times K_b}{m_{\text{solvent, in kg}} \times \Delta T_b}$$
$$= \frac{(4.2 \text{ g})(1.71^{\circ}\text{C})}{(0.112 \text{ kg})(56.7^{\circ}\text{C} - 55.95^{\circ}\text{C})}$$
$$= 85.5 \text{ g/mol}$$

NOTE: Pay attention to units.

Professional Publications, Inc.

<u>6-10c</u>

39.4

[decrease]

Acids

- Molecules that release H⁺ ions in water
- pH < 7

Bases

- Molecules that release OH⁻ ions in water
- pH > 7

$$pH = -\log_{10}[H^+] = \log_{10}\left(\frac{1}{[H^+]}\right)$$
 38.11

 $[H^+]$ and $[OH^-]$ are H^+ and OH^- concentration, respectively. pH = 7 defines a neutral solution pH + pOH = 14 6-11a1

Example (FEIM):

A 0.1 normal solution of hydrochloric acid has a pH of 1.1. What is the percent ionization?

$$pH = -\log_{10} \left[H^{+} \right] = 1.1$$
$$\log_{10} \left[H^{+} \right] = -1.1$$

Take the inverse logarithm of both sides.

$$\begin{bmatrix} H^{+} \end{bmatrix} = 10^{-1.1} = 0.079 \text{ mol/L}$$
$$\begin{bmatrix} H^{+} \end{bmatrix} = (\text{fraction ionized})(\text{molarity})$$

Since HCI releases only 1 H⁺ ion per molecule, the normality and molarity are the same. 1 • \

fraction ionized =
$$\frac{\left[H^{+}\right]}{\text{molarity}} = \frac{\left(0.079 \ \frac{\text{mol}}{\text{L}}\right)}{\left(0.1 \frac{\text{mol}}{\text{L}}\right)} = 0.79$$

percent ionized = (fraction ionized)100% = 79%

6-11a2

Neutralization

When acids and bases combine, they lose H⁺ and OH⁻ to make H₂O, and the other ions form salts.

Example (FEIM):

The atomic weight of sodium is 23, of oxygen is 16, and of hydrogen is 1. To neutralize 4 grams of NaOH dissolved in 1 L of water requires 1 L of

(A) 0.001 N HCl solution
(B) 0.01 N HCl solution
(C) 0.1 N HCl solution
(D) 1.0 N HCl solution

The molecular weight of NaOH is approximately 40, which is equal to the equivalent weight (1 e⁻ exchanged).

Since we had 4 g of solute, the gram equivalent weight is 4/40 = 0.1. Normality is the gram equivalent weight per L, and since we have 1 L, the normality is 0.1/1 = 0.1.

Since the HCl is also 1 L, its normality must be the same.

Therefore, (C) is correct.

6-11b

Equilibrium

- Solutions can have both reactants and products existing together.
- Equilibrium is when the concentration of reactants and products is not changing.

6-11c

Inorganic Chemistry: Solutions

Le Châtelier's Principle:

- A reversible reaction requires energy to go one direction and releases energy when going the other direction.
- When a reaction at equilibrium is stressed, it reacts to relieve that stress.

Equilibrium Constant:

For $aA + bB \rightleftharpoons cC + dD$ 38.2

$$K_{\rm eq} = \frac{[C]^c [D]^d}{[A]^a [B]^b} = \frac{k_{\rm forward}}{k_{\rm reverse}} \qquad 38.5$$

Solubility Constant:

For
$$A_m B_n \Leftrightarrow mA^+ + nB^-$$
, $K_{sp} = [A^+]^m \times [M^-]^n$

Example (FEIM):

At a particular temperature, it takes 0.038 g of $PbSO_4$, with a molecular weight of 303.25 g/mol, per liter of water to prepare a saturated solution. What is the solubility product of $PbSO_4$ if all of it ionizes?

$$\begin{bmatrix} Pb^{+2} \end{bmatrix} = \begin{bmatrix} SO_{4}^{-2} \end{bmatrix} = \frac{\begin{pmatrix} 0.038 \text{ g} \\ 303.25 \frac{\text{g}}{\text{mol}} \end{pmatrix}}{1L} = 1.25 \times 10^{-4} \frac{\text{mol}}{L}$$
$$K_{sp} = (1.25 \times 10^{-4})(1.25 \times 10^{-4}) = 1.56 \times 10^{-8}$$
Professional Publications. Inc

<u>6-11e</u>

Ideal Gas Law:

 $\rho = \frac{1}{\nu} = \frac{p}{RT} \qquad 38.8 \qquad \frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2} \qquad 38.9 \qquad pV = n\overline{R}T \qquad 38.10$

Molar Volume – volume of one mole of ideal gas (22.4 L at STP for any gas)

Example (FEIM):

Ethane gas burns according to the equation $2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$. What volume of CO_2 , measured at standard temperature and pressure, is formed for each gram-mole of C_2H_6 burned? Assume an ideal gas.

- (A) 22.4 L
- (B) 44.8 L
- (C) 88.0 L
- (D) 89.6 L

6-11f1

6-11f2

Inorganic Chemistry: Solutions

Chemistry

$$V = \frac{nRT}{P} = \frac{(2 \text{ mol})\left(8314 \frac{J}{\text{kmol} \cdot \text{K}}\right)\left(\frac{1 \text{ kmol}}{1000 \text{ mol}}\right)(273.16\text{K})}{(1 \text{ atm})\left(\frac{1.013 \times 10^5 \text{ Pa}}{1 \text{ atm}}\right)\left(\frac{\text{m}^3}{1000 \text{ L}}\right)}$$

= 44.8 L

Therefore, B is correct.

Kinetics

Reversible reaction rates depend on:

- substances in reaction
- exposed surface
- concentrations
- temperature
- catalysts

6-11g

6-12a

Electrochemistry

Electrochemical reactions are reactions forced to proceed by supplying electrical energy.

- Cathode is negative
- Anode is positive

6-12b1

Chemistry

Electrochemistry

Faraday's Laws

- 1. The mass of a substance created by electrolysis is proportional to the amount of electricity used.
- 2. For any constant amount of charge used, the mass of substance created is proportional to its equivalent weight.
- 3. One faraday (96,487 C) is the charge of one mole of electrons and will produce one gram of equivalent weight.

$$m_{\text{grams}} = \frac{It(\text{MW})}{(96\,485)(\text{change in oxidation state})}$$

= (no. of faradays)(GEW) 39.5

Chemistry Electrochemistry

Example 1 (EIT8):

Example 29.21

What current is required to produce two grams of metallic copper (atomic weight = 63.6) from a copper sulfate solution in 1.5 hours?

(solution)

The electrolysis reaction is

$$Cu^{+2} + 2e^{-} \longrightarrow Cu$$

Since the change in charge on the copper is 2, the equivalent weight of copper is

$$EW_{Cu} = \frac{63.6}{2} = 31.8$$

 ^{32}An electron has 1.602 \times 10⁻¹⁹ C of charge. A *faraday* is the charge associated with one mole of electrons. Therefore, a faraday is

faraday =
$$\left(1.6022 \times 10^{-19} \frac{\text{C}}{\text{electron}}\right)$$
 (6.022 × 10²³ electrons)
= 96,485 C

From Eq. 29.42,

$$m_{\text{grams}} = \frac{It \times (\text{MW})}{(96,485)(\text{change in oxidation state})}$$
$$2 \text{ g} = \frac{I(1.5 \text{ h}) \left(3600 \frac{\text{s}}{\text{h}}\right) \left(31.8 \frac{\text{g}}{\text{EW}}\right)}{96,485 \frac{\text{A} \cdot \text{s}}{\text{EW}}}$$
$$I = 1.12 \text{ A}$$

FERC

6-12b2

6-12b3

Chemistry Electrochemistry

Example 2 (FEIM):

In electrolysis, the anions migrate to the anode. Which of the following ions migrate to the other electrode?

- (A) acidic ions
- (B) cations
- (C) neutral ions
- (D) zwitterions

The "other electrode" is the cathode, which is negatively charged. The cation is a positive ion, so it will migrate to the cathode.

Therefore, (B) is correct.

Organic Chemistry

- Organic any molecule that has one or more carbon atom(s).
- Shape of an orbital: tetrahedron
- The carbon atom shares electrons with four other atoms in the –4 valence state along the points of the tetrahedron.

Chemistry Organic Chemistry

Functional Groups

alkane		alkene	alkyne	arene aromatic ring	alcohol hydroxyl
C-H ar	nd C-C	C = C	C ≡ C	() or	С-ОН
ether C-O-C	amine amino C-N	aldehyde O -C-H	carboxylic acid O CH₃COH	ester O -C-O-C	ketone carbonyl (keto) O -C-C-C-

Example (FEIM):

The combination of an alkyl radical with a hydroxyl groups forms

- (A) an alcohol
- (B) an acid
- (C) an aldehyde
- (D) a carboxyl

This problem can be represented as the chemical formula $C_nH_{2n}^+ + OH^- \rightarrow C_nH_{2n}OH$ The product is an alcohol. Therefore, (A) is correct.

Professional Publications, Inc.

6-13b

6-13c1

Chemistry

Organic Chemistry

Families of Organic Compounds

 Organic compounds that have the same functional group belong to the same family.

Example 1 (FEIM):

Which compound families are associated with the following bonds?

1. C-C 2. C=C 3. C=C(A) 1: alkene, 2: alkyne, 3: alkane (B) 1: alkyne, 2: alkane, 3: alkene (C) 1: alkane, 2: alkene, 3: alkyne

(D) 1: alkane, 2: alkyne, 3: alkene

Looking at the table for the compound families, we see that

1. C-C is an alkane

2. C = C is an alkene

3. C = C is an alkyne

Therefore, (C) is correct.

6-13c2

Chemistry Organic Chemistry

Example 2 (FEIM): Which of the following organic chemicals is most soluble in water? (A) CH_3CH_3 (B) CH_3OH (C) CCI_4 (D) $CH_3-(CH_2)_n-CH_3$

All the possible answers are symmetric molecules except for CH_3OH , which has the hydroxyl group (OH). CH_3OH is a polar molecule and water is a polar molecule. Polar molecules (e.g., alcohols) are highly soluble in polar solvents (e.g., water).

Therefore, (B) is correct.

Professional Publications, Inc.

From Eq. 61.17, the activity after 2000 years will be

$A_{2000} = \lambda N_{2000}$ $\frac{\left(2.876\times10^{-5}\frac{1}{a}\right)\left(1.427\times10^{26}\text{ atoms}\right)}{\left(365\frac{d}{a}\right)\left(24\frac{h}{d}\right)\left(3600\frac{s}{h}\right)}$

37.4

Chemistry Half-Life

- Radioactive elements decay exponentially.
- $t_{1/2}$ is the time required for half of the original atoms to decay.

 $N = N_0 e^{-0.693t/t_{1/2}}$

Example 61.3

What will be the activity of 60 kg of Pu-239 (half-life of 24,100 years) after 2000 years?

(solution)

From Eq. 61.14, the decay constant is

$$\lambda = \frac{0.6931}{t_{1/2}} = \frac{0.6931}{24,100a}$$
$$= 2.876 \times 10^{-5} a^{-1}$$

The mass, number of moles, and number of atoms of Pu-239 after 2000 years will be

$$m_{2000} = m_0 e^{-\lambda t} = (60 \text{ kg}) e^{-(2.88 \times 10^{-5} \frac{1}{a})(2000a)}$$

= (60 kg)(0.9440) = 56.64 kg

6-14

$$n_{2000} = \frac{m}{A} = \frac{56.64 \text{ kg}}{239 \frac{\text{kg}}{\text{kmol}}} = 0.2370 \text{ kmol}$$
$$N_{2000} = n \times N_A = (0.2370 \text{ kmol}) \left(1000 \frac{\text{mol}}{\text{kmol}}\right)$$
$$\times \left(6.023 \times 10^{23} \frac{\text{atoms}}{\text{mol}}\right)$$
$$= 1.427 \times 10^{26} \text{ atoms}$$

$$n_{2000} = \frac{m}{A} = \frac{56.64 \text{ kg}}{239 \frac{\text{kg}}{\text{kmol}}} = 0.2370 \text{ kmol}$$
$$N_{2000} = n \times N_A = (0.2370 \text{ kmol}) \left(100 \times \left(6.023 \times 10^{23} \frac{\text{atoms}}{10^{23}}\right)\right)$$

 $= 1.302 \times 10^{14} \text{ Bq}$

$$n_{2000} = \frac{m}{A} = \frac{50.04 \text{ kg}}{239 \frac{\text{kg}}{\text{kmol}}} = 0.2370 \text{ kmol}$$
$$N_{2000} = n \times N_A = (0.2370 \text{ kmol}) \left(1000 \frac{\text{mol}}{\text{kmol}}\right)$$
$$\times \left(6.023 \times 10^{23} \frac{\text{atoms}}{\text{mol}}\right)$$
$$= 1.427 \times 10^{26} \text{ atoms}$$