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Preamble : This are informal notes of a series of 4 talks I gave in Carthage, as
introduction to the Dido Conference, May 24-May 29, 2010. The goal is to present different
aspects of the classical question "How to understand the spectrum of the Laplacian on a
Riemannian manifold thanks to the geometry of the manifold ?” The first lecture presents
some generalities and some general results, the second lecture concerns the hyperbolic
manifolds, the third lecture gives estimates on the conformal class, and the last present
some estimates for submanifolds. The lecture ends with some open questions.

1 Introduction, basic results and examples

Let (M, g) be a smooth, connected and C* Riemannian manifold with boundary oM.
The boundary is a Riemannian manifold with induced metric gjsp. We suppose OM to
be smooth. We refer to the book of Sakai [Sa] for a general introduction to Riemannian
Geometry and to Bérard [Be| and Chavel [Chl] for an introduction to spectral theory.

For a function f € C%(M), we define the Laplace operator or Laplacian by
Af =odf = —div gradf

where d is the exterior derivative and ¢ the adjoint of d with respect to the usual L2-inner
product

(f,h) =/th av

where dV denotes the volume form on (M, g).

In local coordinates {x;}, the Laplacian reads
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In particular, in the Euclidean case, we recover the usual expression

Let f € C*(M) and h € C'(M) such that hdf has compact support in M. Then we
have Green’s Formula

_ af
(Af,h)_/M<df,dh>dV—/aMhdndA

where & d denotes the derivative of f in the direction of the outward unit normal vector

field n on OM and dA the volume form on OM.
In particular, if one of the following conditions OM = 0, hjgas = 0 or (d—f)|aM =0is
satisfied, then we have the relation

(Af,h) = (df,dh).
In the sequel, we will study the following eigenvalue problems when M is compact :

— Closed Problem :
Af=M\fin M; OM = (;

— Dirichlet Problem
Af=Afin M; f\BM:O§

— Neumann Problem :

Af = \f in M; (ﬁ

=0.
dn)wM

We have the following standard result about the spectrum, see [Be] p. 53.

Theorem 1. Let M be a compact manifold with boundary OM (eventually empty), and
consider one of the above mentioned eigenvalue problems. Then :

1. The set of eigenvalue consists of an infinite sequence 0 < Ay < Ag < A3 < ... — 00,
where 0 is not an eigenvalue in the Dirichlet problem ;

2. Each eigenvalue has finite multiplicity and the eigenspaces corresponding to distinct
eigenvalues are L?(M)-orthogonal ;

3. The direct sum of the eigenspaces E(\;) is dense in L*(M) for the L*-norm. Futher-
more, each eigenfunction is C°°-smooth and analytic.



Remark 2. The Laplace operator depends only on the given Riemannian metric. If
F:(M,g) — (N,h)

is an isometry, then (M, g) and (N, h) have the same spectrum, and if f is an eigenfunc-
tion on (N, h), then f o F is an eigenfunction on (M, g) for the same eigenvalue.

It turns out that in general, the spectrum cannot be computed explicitly. The very few
exceptions are manifolds like round spheres, flat tori, balls (see [Chl] for some classical
examples where the spectrum is known). In general, it is only possible to get estimate of
the spectrum, and these estimation are related to the geometry of the manifold (M, g) we
consider. However, asymptotically, we know how the spectrum behave. This is the Weyl
law.

Weyl law : If (M, g) is a compact Riemannian manifold of dimension 7, then

(27r)2( k

Ae(M, g) ~ )" (1)

as k — oo, where w,, denotes the volume of the unit ball of R".

It is important to stress that the result is asymptotic : we do not know in general for
which k the asymptotic estimate is good! However, this formula is a guide as we try to
get upper bounds.

In these lectures, I will investigate the question ”"can A, (and in particular ;) be very
large or very small 7”. The question seems trivial or naive at the first view, but it is
not, and I will try to explain that partial answers to it are closely related to geometric
properties of the considered Riemannian manifold.

Of course, there is a trivial way to produce arbitrarily small or large eigenvalues :
take any Riemannian manifold (M, g). For any constant ¢ > 0, A\i(c?g) = C%)\k(g) and an
homothety produce small or large eigenvalues. So, we have to introduce some normaliza-
tions, in order to avoid the trivial deformation of the metric given by an homothety. Most
of the time, these normalizations are of the type ”volume is constant” or ”curvature and
diameter are bounded”.

Main goals : the main goals may be summarized as follow.

Question 1 : Try to find constants a, and b, depending on geometrical invariants such
that, given a compact Riemannian manifold (), g), we have

ar(g) < (M, g) < bi(g).



There are a lot of possible geometric invariants, but in a first approximation, we can
think of invariants depending on upper or lower bounds of the curvature (sectional, Ricci
or scalar) of (M, g), upper or lower bounds of the volume or of the diameter, lower bound
of the injectivity radius of (M, g). This will appear concretely during the lecture.

If we are able to do this (perhaps only for some k, often only for £ = 1), a new obvious
question comes into the game :

Question 2 : Are the bounds a; and b, in some sense optimal 7 We can give different
meaning to the word ”optimal”, but, for example, to see that a; (or by) is optimal, we
can try to construct a manifold (M, g) for which A\;(M, g) = ax (or A\p(M, g) = b). May
be, this is not possible, but we can do a little less, namely to construct a family (M, g,)

of manifold with Ay (M, g,,) arbitrarily close to ax(g,) (or bx(gn)) as n — oo, or such that
Ak (Mn,gn)
ak(gn)

Note that, concretely, this is difficult, and we can hope to realize such a construction
only for small k, in particular k& = 1.

the ratio — 1lasn— 0.

If we are able to find (M, g) for which A\,(M, g) = ay, (or bg), a new question will come :

Question 3 : Describe all manifolds (M, g) such that A\y(M,g) = ai. Again, this is
difficult and you may hope to do this only for small k.

In these lectures, I will investigate mainly the first question, but also say a few words
of the two other problems.

To investigate the Laplace equation Af = Af is a priori a problem of analysis. To
introduce some geometry on it, it is very relevant to look at the variational characterization
of the spectrum. To this aim, let us introduce the Rayleigh quotient. If a function f lies
in H'(M) in the closed and Neumann problems, and on H} (M) in the Dirichlet problem,
the Rayleigh quotient of f is
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Note that in the case where f is an eigenfunction for the eigenvalue A, then
_ IIaR% _ Sy AF fav _
[, f2dv [, f2dv &

Theorem 3. (Variational characterization of the spectrum, [Be] p. 60-61.) Let us consi-
der one of the 3 eigenvalues problems. We denote by {f;} an orthonormal system of
eigenfunctions associated to the eigenvalues {\;}.

R(f)

R(f)



1. We have
e =inf{R(u):u#0;uL fo,.., fr_1}
where w € HY(M) (u € HY(M) for the Dirichlet eigenvalue problem) and R(u) = A
iof and only if u 1s an eigenfunction for A.

In particular, for a compact Riemannian manifold without boundary, we have the
classical fact

M (M, g) =inf{R(u) : u;«é();/MudV:O}.

At view of this variational characterization, we can think we have to know the first
k or k — 1-eigenfunctions to estimate )\ ; this is not the case :

2. Min-Max : we have
A = infsup{R(u) :u#0, u€ Vi}
Vi

where Vi runs through k + 1-dimensional subspaces of H'(M) (k-dimensional sub-
spaces of H} (M) for the Dirichlet eigenvalue problem,).
In particular, we have the very useful fact : for any given (k+ 1) dimensional vector
subspace V' of H' (M),

Me(M, g) < sup{R(u) :u #0, ue V}.

A special situation is if Vi is generated by k + 1 disjointly supported functions
Jis s fra1, because

sup{R(u) :u#0, ue Vi} =sup{R(f;) :i=1,...k+ 1}, (2)
which make the estimation particularly easy to do. We will use this fact in the sequel.

Remark 4. We can see already two advantages to this variational characterisation of the
spectrum. First, we see that we don’t need to work with solutions of the Laplace equation,
but only with "test functions”, which is easier. Then, we have only to control one derivative
of the test function, and not two, as in the case of the Laplace equation.

To see this concretely, let us give a couple of simple examples.

Example 5. Monotonicity in the Dirichlet problem. Let Q1 C Qy C (M, g), two
domains of the same dimensionn of a Riemannian manifold (M, g). Let us suppose that £



and €y are both compact connected manifolds with boundary. If we consider the Dirichlet
eigenvalue problem for Uy and Qo with the induced metric, then for each k

Ae(22) < Ae($21)
with equality if and only if 1 = Qs.

The proof is very simple : each eigenfunction of €2; may be extended by 0 on €2y and
may be used as a test function for the Dirichlet problem on 5. So, we have already the
inequality. In the equality case, the test function becomes an eigenfunction : because it is
analytic, it can not be 0 on an open set, and €; = Q.

Example 6. As a consequence of (2) we have the following : if M is a compact manifold
without boundary, and if y,.... Q1 are domains in M with disjoint interiors, then

(M, g) < maz(pa (1), ., 1 Q1))
where 11(Q) denotes the first eigenvalue of Q) for the Dirichlet problem.

The second example explains how to produce arbitrarily small eigenvalues for Rieman-
nian manifold with fixed volume.

Example 7. The Cheeger’s dumbbell. The idea is to consider two n-sphere of fixed
volume V' connected by a small cylinder C of length 2L and radius €. The first nonzero
eigenvalue converges to 0 as the radius of the cylinder goes to 0. It is even possible to
estimate very precisely the asymptotic of Ay in term of € (see [An]), but here, we just
shows that it converges to 0.

We choose a function f with value 1 on the first sphere, —1 on the second, and decrea-
sing linearly, so that the norm of its gradient is % By construction we have [ fdV =0,
so that we have A\; < R(f).

But the Rayleigh quotient is bounded above by
VolC/L?
2V
which goes to 0 as € does.

A similar construction with k spheres connected by thin cylinders shows that we can
construct examples with k arbitrarily small eigenvalues.

Observe that we can easily fix the volume in all these constructions : so to fix the volume
s no enough to have a lower bound on the spectrum.



Let us finish this introduction to the Laplace operator on functions by giving some
classical results which show how the geometry allows to control the first nonzero eigenvalue
in the closed eigenvalue problem.

The first one is the Cheeger’s inequality, which is in some sense the counter-part of
the dumbbell example. We present it in the case of a compact Riemannian manifold wi-
thout boundary, but it may be generalized to compact manifolds with boundary (for both
Neumann or Dirichlet boundary conditions) or to noncompact, complete, Riemannian
manifolds.

Definition 8. Let (M,g) be an n-dimensional compact Riemannian manifold without
boundary. The Cheeger’s isoperimetric constant h = h(M) is defined as follows

. Voln,lc' }

~ min(Vol, M, Vol, M)’

hOI) = inf{I(C): I(C)

where C' runs through all compact codimension one submanifolds which divide M into two
disjoint connected open submanifolds My, Ms with common boundary C' = OM; = OMs.

Theorem 9. Cheeger’s inequality. We have the inequality

h*(M,
M1 g) > ORI
A proof may be found in Chavel’s book [Chl] and developments and other statement
in Buser’s paper [Bul]. In particular, Buser proved thanks to a quite tricky example that
Cheeger’s inequality is sharp ([Bul], thm. 1.19).

This inequality is remarkable, because it relates an analytic quantity () to a geometric
quantity (h) without any other assumption on the geometry of the manifold.

It turns out that an upper bound of A; in term of the Cheeger’s constant may be given,
but under some geometrical assumptions : this is a theorem of P. Buser (see [Bu2]).

Theorem 10. Let (M™, g) be a compact Riemannian manifold with Ricci curvature boun-
ded below Ric(M,g) > —d6%*(n—1), 6 > 0. Then we have
M(M, g) < C(Oh+ h?),

where C' is a constant depending only on the dimension and h is the Cheeger’s constant.

We cannot avoid the condition about the Ricci curvature. In [Bu3], Buser gave an
example of a surface with arbitrarily small Cheeger’s constant, but with A; uniformly
bounded from below. It is easy to generalize it to any dimension.



Example 11. We consider a torus S' x S with its product metric g and coordinates
(z,9), —m < 2,y <7 and a conformal metric g. = x*g.

The function x. is an even function depending only on x, takes the value € at 0,7, 1
outside an e-neighbourhood of 0 and .

We see immediatly that the Cheeger constant h(g.) — 0 as € — 0.
It remains to see that A\i(g.) is uniformly bounded from below.
Let f be an eigenfunction for A\i(g.). We have
df |2dV.
[ f2ave

Let Sy ={p: f(p) >0} and Se ={p: f(p) <0} and let F = f on Sy and F = af on
So where a is choosen such that deV =0.
This implies R(F) > A (g).
But
R(F) - Js, |dfPdV +a® [g |df[>dV
f, LAV +a? [ f2V

and

l/|@?dm:3/\deu
Si S;

/Fms/ﬂw
S; Si

Ai(ge) = Ry (f) = R(F) = Mi(g)-

This implies

I finish this introduction by giving to classical results where the curvature enter directly
on the estimate. The first is a lower bound obtained by Li and Yau :

Theorem 12. (See [LY]). Let (M, g) be a compact n-dimensional Riemannian manifold
without boundary. Suppose that the Ricci curvature satisfies Ric(M,g) > (n — 1)K and
that d denote the diameter of (M, g).

Then, if K <0,

exp — (1+ (1 —4(n — 1)2d*K)"/?)
2(n _ 1)2d2 >

)\1(M7.g> Z

8



and if K =0, then

2

™
> —
/\I(Mag) — 4d2

This type of results was generalized in different directions, see for example [BBG].

The second is an upper bound due to Cheng [Che]

Theorem 13. (Cheng Comparison Theorem) Let (M™,g) be a compact n-dimensional
Riemannian manifold without boundary. Suppose that the Ricci curvature satisfies Ric(M, g) >
(n — 1)K and that d denote the diameter of (M, g).

Then

(n —1)2K? n C(n)k
4 d?

where C(n) is a constant depending only on the dimension.

Remark 14. This paper [Che] of Cheng is really an important reference, see MathSciNet.
In particular, if Ricci(M, g) > 0, there are a lot of results in order to find the best estimate,
at least for \y, but this is not our purpose in this introduction.

2 The case of the negatively curved compact manifolds

In this lecture, I will explain how the fact of being negatively curved influences the
spectrum of a manifold. I first give some general results and then I will prove one of them
in detail.

Most of the results are true for variable negative curvature and manifolds of finite vo-
lume. In order to avoid some technical difficulties, I will only deal with the case of compact
hyperbolic manifolds, that is Riemannian manifolds with constant sectional curvature —1.
For more generality, the reader may look at [BCD].

There will be two parts : first, some fact of geometry that I will describe without
proof (and the proofs are in general not easy). Then in the second part, we will see some
consequences for the spectrum.

2.1 The geometry

First, except in dimension 2, it is difficult to construct explicitely hyperbolic manifolds.
Most of the construction are of algebraic nature, and it is not easy to ”visualize” these
manifolds. However, there are some general results which allow to have a good general
idea of the situation. A general reference for hyperbolic manifolds is the book of Benedetti
and Petronio [BP]. See also [G] for a short introduction.



The thick-thin decomposition. Attached to hyperbolic manifold is the so called Mar-
gulis constant c, > 0 depending only on the dimension. Even if its definition is not crucial
in the sequel, I state it briefly : if M™ is an hyperbolic manifold, p € M, «, 3 two geodesic
loops at p, then if the length [(«),(3) of a and (3 is less then 2¢,,, then a and [ generate
an almost nilpotent subgroup of the fundamental group (M, p). This has a fundamental
geometric implication.

Define

Mipin, ={p € M :inj(p) < cn},

where inj denotes the injectivity radius, and

Mthick = {p € M: Z”](p) > Cn}-

The main consequences of the Margulis lemma (see [BP],[Bul]) are the following
1. Mipier # 0.

2. Moreover, if n > 3, M;p;q is connected.

3. Mipin may be empty, but if not, each connected component of My, is a tubular
neighborhood of a simple closed geodesic 7 of length < ¢,,.

4. If R(7y) denotes the distance between v and My;cx, then
V(en/2) < Coll(y)sink B(y) < Vol(M),

where V' (¢, /2) denote the volume of a ball of radius ¢,/2 in the hyperbolic space,
and ), is a positive constant depending only on the dimension.

In particular, if the length of 7 is small, then R(7) is large, of the order of In(1/1(7)).

5. The number of connected component of M,;, is finite.

The structure of the volume. The possible values of the volume of an hyperbolic
manifold is rather special (see [G]).

In dimension 2, thanks to the theorem of Gauss-Bonnet, the volume of an hyperbolic
surface of genus v is 47(y — 1). But, for each genus, there is a continuous family of
hyperbolic surfaces (indeed a family with 6y — 6 generators).

In dimension n > 4, given a positive number V), there exist only a finite number of
hyperbolic n-dimensional manifolds of volume < V4.

The case of dimension 3 is special : the set of volume admits accumulation points.
They correspond to a family of 3-dimensional hyperbolic manifolds of volume < V' which
degenerate in some sense to a non compact, finite volume hyperbolic manifold of volume
V. These examples are the famous examples of Thurston, see [BP].

10



2.2 Implications for the spectrum

Case of surfaces, see [Bul],[Bu4], : We consider the space T, of hyperbolic surfaces
of genus . Then

1. For each € > 0, there exist a surface S € T, with A\y,_3 < e. This result is easy to
establish : it is like construction of k small eigenvalue with the Cheeger Dumbbell
(Example 7).

2. It was known since a long time that A\yy_3 > }1 for each S € T, and conjectured that

Aoy—2 > % for each S € T,. After some little progress, this conjecture was solved very
recently by Otal and Rosas, see [OR].

3. For each € > 0 and each integeer N > 0, there exists a surface S € T, with Ay (5) <
% + €. This is a direct consequence of the Theorem of Cheng and of the fact that
there exist surfaces with arbitrarily large diameter :

1 (3N

< - .
M (S) € 7+ =5

Case of dimension n > 3 : The new fact is that A\; may be small only in the case where
the volume becomes large!

Theorem 15. There ezists a constant C(n) > 0 such that for each compact hyperbolic
manifold (M, g) of dimension n > 3 we have

C(n)
MM, g) > ———F—.
1( 79)— VOZ(M,Q)Z
This theorem was first proved by Schoen in 1982. In 1986, Dodziuk and Randol gave
another very nice proof that I will explain. Then it was generalized to variable curvature,

see [BCDJ.

There is however a difference between the dimension 3 and the higher dimensions. In
dimension 3, it is possible to produce an hyperbolic manifold with volume bounded from
above by a given constant 1 with an arbitrarily large number of eigenvalues less than 1+e€.
This comes from the fact that the above mentionned Thurston examples have arbitrarily
large diameter and volume bounded from above, and from the theorem of Cheng.

This is not possible in higher dimension : Buser proved in [Bul] that there exist a
constant C,, > 0 such that if (M, g) is a compact hyperbolic manifold of dimension n > 4,
the number of eigenvalues in the interval [0, z] is bounded from above by C,Vol(M)z"/?
(for = large enough).

11



2.3 Main ideas of the proof of Theorem 15
Let us give the proof of Dodziuk-Randol form Theorem 15, see the paper [DR].

It consists in looking at what can occur on the different parts M;p;, and M. The
connected components of M, are simple enough to allow to do some calculations in
Fermi coordinates, and to get good estimates. At the contrary, M. is complicated, but
at each point the injectivity radius is large enough. This has two implications :

- we can compare the volume and the diameter : the diameter cannot be much larger
than the volume, because around each point there is enough volume.

- we can use a Sobolev inequality and show that an eigenvalue associated to a very
small eigenvalue is almost constant in the thick part, which is intuilively clear, but in
general not true if we cannot control the injectivity radius and the curvature.

Putting all informations together, we can prove the theorem.

Eigenvalues of a thin part 7" of M. Recall that the thin part is a tubular neighborhood
of a simple closed geodesic 7. We can endow it with the Fermi coordinates. A point
x = (t,p,0) € T is specified by its position ¢ an ~, its distance p from 7 and a point
o € S"2. In these coordinates, the metric has the form
g(x) = dp® 4 cosh? pdt* + sinh® pdo?,
and the volume element is (sinh™ 2 p cosh p)dpdtdo.

Let f # 0 be a function which vanishes on the boundary of T, and let us estimate its
Rayleigh quotient on T'.

First
I R
(/ 1?2 = (/ da/ dt/ f2(sinh™ 2 pcosh p)dp)?,
T sn-2 0 0

where [ is the length of v and R the radius of 7' (depending on ¢ and on o).
We integrate by part with respect to p and get

R R
2
/ f*(sinh"™* peosh p)dp = ——— / f fosinh™ " pdp.
0 - 0

As sinh p < cosh p, we get

n—1

<G [ [Cisplme peompan = (2 1700
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Now, by Cauchy-Schwarz inequality,

i< [ 7] 2

and f2 < |V f[? so that we get

JAE %/Tf

At this stage, note that if ¢ is an eigenfunction for (M), and if it turns out that
¢ is of constant sign on the thick part, it has to change of sign on at least one of the
connected components of the thin part of M. This allow to construct a test function for

the Dirichlet problem on a tube T" with Rayleigh quotient A;(M), so that we deduce that
M (M) > @, which is certainly > W, for a convenient constant C'(n), because
we know that the volume of M is not arbitrarily small.

Of course, things are in general not so easy, and we have to look at the thick part of
M.

The situation on the thick part. In each point x of M., the injectivity radius is at
least equal to the Margulis constant ¢(n), so that a ball of a fixed radius r < ¢, will be
embedded. Let us denote such a ball by B.

On B, by a classical Sobolev inequality (see for example [W], 6.29, p.240), if ¢ is an
eigenfunction for A\ (M), we have

N
do(z)| < C Y |AdY| 2s),

1=0

where C' depend on r and on the geometry and N = [§] 4 1. But we fix r and the local
geometry does not change from one point to another, because of the constant curvature.
(Note that we have to say more at this point when we try to generalize the result to
variable curvature).

As A and d commute, and because ¢ is an eigenfunction, we deduce

|[do(x)| < Clldo||L2(m), (3)
and this is true for each point x € M;p;cr.

Now, if x,y € Mypier, we can join them by a (locally) geodesic path « of length < C}V
(the diameter of Mp; cannot be too large in comparison of the total volume of M), and

13



we choose k points & = zq, ..., 7} = y along v such that v C U¥_B(z;,7/2), and such that
one of these balls intersects at most (3 other.

Then

e
—

k—1
6(y) — &) <D [d(zin1) — D) < C Nldd || L2 (Ba)
=0

i

Il
=)

k—1

< CEY2 (Y 1do 72 (pe,m) > < CBY2KY?||d6]| 2y
i=0
Again, k is, up to a constant, at most of the order of the diameter of M., that is of
V', so that we can summarize the situation by :

On M;p;er, there is a constant C' depending only on the dimension such that

6(y) — d(z)] < C\/ M (M)Vol(M)'/2. (4)
Conclusion of the proof. We want to show

C(n)
M) >V
MM) 2 Vol(M)?
We suppose

)= Vol(M)2’

and show that his leads to a contradiction if € is too small.

A (M

We consider an eigenfunction ¢ with ||¢|| = 1.

For z,y € Mypier, we have |¢p(z) — ¢(y)| < a:= C#]\%m.

Suppose first that
sup{|p(x)| : x € Mpier} > v

Then things are easy, because ¢ cannot change of sign in M. We have A\ (M) >
(n=1)°
TRt

So we can now suppose that
sup{|p(x)| : x € Mypier} < .

We introduce

14



A={zeM:é(x)>a);
B={zeM: ¢ <—a}

C={zeM:|p)<a}.
We know that A, B C Mpick.
Let " = ¢p+aand ¢~ = ¢ — «.
¢t and ¢~ are equal to 0 respectively on 9B and 0A, and this implies

[ o = [ jas = P2 [ oy

/A'dd)‘Q :/A"WF > Lf)z//{w—)%

But, as e = 0, |¢p — ¢T[,|¢p — ¢~ | — 0 and [, ¢* — 0, so that we can conclude.

So

3 Estimates on the conformal class

3.1 Introduction
Let us begin by the following result from [CD] :

Theorem 16. Let M be any compact manifold of dimension n > 3 and \ > 0.
Then there ezist a Riemannian metric g on M with Vol(M,g) =1 and A\ (M, g) > A.

This mean that it is possible to construct Riemannian metrics of fixed volume and
arbitrarily large eigenvalues. The proof consists in constructing such metrics on spheres
and then to pass to other manifolds thanks to classical surgery constructions.

However, it turns out that if we stay on the conformal class of a given Riemannian
metric gg, then, we get upper bounds for the spectrum on volume 1 metrics, and it is the
goal of this lecture to explain this.
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Note that on the contrary, this is easy to produce arbitrarily small eigenvalues on a
conformal class : the Cheeger dumbbell type construction may be done via a conformal
deformation of the metric.

For a more complete story of the question about "upper bounds”, one can read the
introduction of [CE1].

Our goal is to prove the following :

Theorem 17. Let (M™, g9) be a compact Riemannian manifold. Then, there exist a
constant C(go) depending on go such that for any Riemannian metric g € [go], where
[g0] denotes the conformal class of go, then we have

M(M, g)Vol (M, g)*™ < C(go)k*'".
Moreover, if the Ricci curvature of go is nonegative, we can replace the constant C(go)
by a constant depending only on the dimension n.

In the special case of surfaces, we have a bound depending only on the topology.

Theorem 18. Let S be an oriented surface of genus ~y. Then, there exist a universal
constant C' such that for any Riemannian metric g on S

M (S, g)Vol(S) < Cly + 1)k.
These two theorems are due to Korevaar [Ko].
Remark 19. 1. Recall that \.(M, g)Vol(M, g)*™ is invariant through homothety of the
metric, and this control is equivalent of fizing the volume.
2. The estimate is compatible with the Weyl law.
3. These estimates are not sharp in general.

4. These results were already known for k = 1, with different kind of proofs and different
authors (see for example the introduction of [CE1]). However, in order to make a
proof for all k, Korevaar used a completely new approach.

The way to get upper bounds is to construct test functions, and, as said at point (2)
of Theorem 3, it is nice to have disjointly supported functions.

Let us sketch without going into the details a classical way to do this (see for example
[Bu2|, [LY]) : we construct a family of (k+1) balls of center x; i = 1, ...,k + 1, and radius
r such that B(x;,2r) N B(x;,2r) = 0, with r = (Y20L9)1/n ¢ > constant depending
on the dimension ; of course, the difficulty is to show that such a construction is possible.

Then, construct the test function f; with value 1 on B(z;, ), 0 outside B(z;,2r), and
for pE B(xla ZT) - B(xla T)? fl(p) = 1= %d<p7 B(xm T))
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Then |gradfi(p)| < %, and we have

[oy dfil? < 1 VolB(x;,2r)

R(fi) =7 < 5—5—,
() fM 2~ r2 VolB(xy,r)
and, because r = (YZILD) /7 e get
R(f) < ( k )2/n Q/nVolB(xi,QT)'
Vol(M, g) VolB(x;,r)
So, we see that we need to control the ratio %m. This depend a lot of what

we know on the Ricci curvature. Namely, we have the Bishop-Gromov inequality : if
Ricci(M, g) > —(n — 1)a*g, with a > 0, then for x € M and 0 < r < R,

VolB(x, R) < VolB*(x, R)
VolB(z,r) — VolB*(z,r)
2

where B% denote the ball on the model space of constant curvature —a-.
p

VolB(xz;,2r)

VolB(x;,r)

large r. If @ = 0, that is if Ricci(M,g) > 0, the ratio %&? is controled by a similar

ratio but in the Euclidean space, and this depend only on the dimension !

So, if a > 0, the control of the ratio is exponential in r and becomes bad for

However, when we look in a conformal class of a given Riemannian metric gq, we have
a priori no control on the curvature, so it seems hopeless to get such test functions. This
is precisely the contribution of N. Korevaar to develop a method which allows to deal
with such situations. We will present it as it is explained in the chapter 3 and 4 of [GNY].
The idea is to find a "nice” family of (k + 1) disjoint subsets, and, with these subsets,
to construct a family of disjointly supported functions, with a control of the Rayleigh
quotient, which allows to give upper bounds for .

3.2 The construction of Grigor’yan-Netrusov-Yau

The construction is a rather metric construction so that we can present it on the
context of metric measured spaces.

Definition 20. Let (X,d) be a metric space. The annuli, denoted by A(a,r, R), (with
a€ X and 0 <r < R) is the set

Aa,m,R) ={x € X : r <d(x,a) < R}.

Moreover, if X > 1, we will denote by NA the annuli A(a, 5, AR).
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Let a metric space (X, d) with a finite measure v. We make the following hypothesis
about this space :

1. The ball are precompact (the closed balls are compact) ;

2. The measure v is non atomic;

3. There exist N > 0 such that, for each r, a ball of radius » may be covered by at most
N ball of radius /2.

This hypothesis plays, in some sens, the role of a control of the curvature, but, as
we will see, it is much weaker. Note that it is purely metric, and has nothing to do
with the measure.

If these hypothesis are satisfied, we have the following result

Theorem 21. For each positive integeer k, there exist a family of annuli {A;}F_, such
that

1. We have v(A;) > C(N) ”(,f), where C(N) is a constant depending only on N ;

2. The annuli 2A; are disjoint from each other.

3.3 Applications

Proof of Theorem 17. The metric space X will be the manifold M with the Riemannian
distance associated to go (and which has nothing to do with g).

The measure v will be the measure associated to the volume form dVj.
As M is compact, the theorem of Bishop-Gromov give us a constant C(go) such that,
for each r > 0 and x € M,

Volg,B(z,r)
Voly, B(x,1/2)

We know that C(go) will depend on the lower bound of Ricci(gy) and of the diameter
of (M> gO) :

As the distance depends only on gy we have a control on the number of ball of radius
r/2 we need to cover a ball of radius r, thanks to a classical packing lemma, see [Zu]
Lemma 3.6, p,.230.

Also, there exist Cy = C3(go) such that, for all » > 0 and = € M,

< Ci(g0)-

Voly, (B(z,1)) < Cor™.
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In general, these constant are bad : we can only say, and this is the point for our
theorem, that they depend only on gy and not on g. But if Ricci(gg) > 0, then the Bishop-
Gromov theorem allows us to compare with the euclidean space, and these constants
depend only on the dimension !

In order to estimate Ax(g), we use a family of 2k + 2 annuli given by Theorem 21 and

satisfying Vol,(A;) > 03(90)%(]\4). Here, the constant C5 dépends on gy via Ci(go),as
indicated in [GNY].

As the annuli 2A4; are disjoint, we use them to construct test functions with disjoint
support.

For an annuli A(a,r, R) we wil consider a function taking the value 1 in A, 0 outside
2A, and decreasing proportionaly to the distance between A and 2A. Let us estimate the
Rayleigh quotient of such a function.

We have, thanks to an Holder inequality,

[ wartav, < ([ artav, vl e
2A 2A

By conformal invariance

([ tartgaviy = ([ il avi
2A 2A

and, because |gradf| < 2 (resp. Z) we have

([ 1dfpavyn < Calan)2
2

because, by hypothesis, Voly, (B(x,1)) < Ca(go)r".

Moreover, by Theorem 21, we know that

Vol,(M
Vol,(4) > Cy(g0) 22,
As we have 2k + 2 annuli, at least k + 1 of them have a measure less than Vali(M).

So,

(Colg0)2") 2"V oly(M)=2/nk "

Cs(go)k™D/V ol, (M) _C<g°)<vozg(M))2/n'

If Ricyy > 0, the constants C; and Cy depend only on n, and the same is true for Cj,
and so, also for C.

R(f) <
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3.4 Futher applications

When we know that we have upper bounds, we can investigate things from a quanti-
tative or qualitative viewpoint. Let us give the example of the conformal spectrum and of
the topological spectrum we developped in [CE1], [CE2] with El Soufi (see also [Co] for a
short survey).

For any natural integer k and any conformal class of metrics [go] on M, we define the
conformal k-th eigenvalue of (M, [go]) to be

AL(M, [go]) = sup { (M, g)Vol(M, 9)*™| g is conformal to go} -
The sequence {A(M, [go])} constitutes the conformal spectrum of (M, [go]).

In dimension 2, one can also define a topological spectrum by setting, for any genus
and any integer k > 0,

AP(y) = sup {\e(M, g)Vol(M, )},

where ¢ describes the set of Riemannian metric on the orientable compact surface M of
genus .

Regarding the conformal first eigenvalue, the second author and Ilias [EI] gave a suf-
ficient condition for a Riemannian metric g to maximize A; in its conformal class [g] :
if there exists a family fi, fo,- - -, f, of first eigenfunctions satisfying >, df; @ df; = g,
then A{(M,[g]) = A1(g). This condition is fulfilled in particular by the metric of any ho-
mogeneous Riemannian space with irreducible isotropy representation. For instance, the
first conformal eigenvalues of the rank one symmetric spaces endowed with their standard
conformal classes [g], are given by

= X{(S", [gs]) = nwy!™, where w, is the volume of the n-dimensional Euclidean sphere
of radius one,

— N(RP™, [g.]) = 2°F (n + Dw?/",

— X(CP, [gs]) = 4m(d + 1)d! =4,

— M (HP?, [g,]) = 8m(d + 1)(2d + 1)!171/24

— X(CaP?, [g,]) — 487 ()5 = Sy/B(:% )1,

There are some difficult questions about the conformal spectrum :

— Is the supremum a maximum, that it does it exist a Riemannian metric g € [go]
where A\, Vol(M, g)*>™ is maximum ?

— It is hopeless to determine Ag[go] in general, but shall we say something in the case
of the sphere, for example ?

Our first result states that among all the possible conformal classes of metrics on ma-
nifolds, the standard conformal class of the sphere is the one having the lowest conformal
spectrum.
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Theorem 22. For any conformal class [g] on M and any integer k > 0,
Ae(M, [g]) = Ae(S™, [gs])-

Although the eigenvalues of a given Riemannian metric may have nontrivial multi-
plicities, the conformal eigenvalues are all simple : the conformal spectrum consists of a
strictly increasing sequence, and, moreover, the gap between two consecutive conformal
eigenvalues is uniformly bounded. Precisely, we have the following theorem :

Theorem 23. For any conformal class [g] on M and any integer k > 0,
bt (M [9)™? = N(M [g)"? > X{(S™, [g4]) = n" 2w,

where wy, is the volume of the n-dimensional Euclidean sphere of radius one.

An immediate consequence of these two theorems is the following explicit estimate of
Ao (M, [g)) -
Corollary 24. For any conformal class [g] on M and any integer k > 0,

N (M, [g]) = ner/ "B
Combined with the Korevaar estimate, Corollary 24 gives
nw2/ "k < A (M, [g]) < CEY"

for some constant C (depending only on n and a lower bound of Ric d?, where Ric is the
Ricci curvature and d is the diameter of g or of another representative of [g]).

Corollary 24 implies also that, if the k-th eigenvalue A\x(g) of a metric g is less than
nws! "k2/ then g does not maximize )\; on its conformal class [g]. For instance, the
standard metric g5 of S*, which mazimizes Ay, does not mazimize Ny on [g] for any
k > 2. This fact answers a question of Yau (see [Y], p. 686).

4 The spectrum of submanifolds of the euclidean space

4.1 Introduction

In this lecture, we will consider submanifolds of the euclidean space. Some of the results
I will give may be generalized for other spaces, for example the hyperbolic space, and this
is more or less difficult depending on the question. I will mention it, without giving a
precise statement.

I will begin with two typical results for the first nonzero eigenvalue
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Theorem 25. (Reilly, [Ry]) Let M™ be a compact submanifold of dimension m of R™.
Then,
m
M(M) < ———||H(M)|3
(M) < Vol(M)H (M),

where ||H(M)||o is the L?>-norm of the mean curvature vector field of M.

Moreover, the inequality is sharp, and the equality case correspond exactly to the case
where M s isometric to a round sphere of dimension m.

This result was generalized to the submanifolds of the sphere and of the hyperbolic
space by Grosjean [Gr] and to hypersurfaces of rank 1 symetric spaces by Santhanam
[San].

Theorem 26. (Chavel, [Ch2]) Let ¥ be an embedded compact hypersurface bounding a

domain Q in R, Then

) )2/ < _n
)‘1( )VOZ( ) = (n+1)2
where 1(Q) is the isoperimetric ratio of 2, that is
_ Vol(%)
~ Vol (Q)n/(n+1)”

I(Q)* =, ()

1(Q)

Moreover, equality holds in (5) if and only if ¥ is embedded as a round sphere.

Indeed, Chavel proved this theorem for hypersurface of a Cartan-Hadamard manifold
(complete, simly connected manifold, with non positive sectional curvature).

These results lead to natural questions
Question 1 : is it possible to generalize these results to other eigenvalues.

Question 2 : Is it really necessary to impose conditions on the curvature or on the isope-
rimetric ratio, at least for hypersurfaces ?

The answer to the second question is yes : namely, in [CDE], we show that, for n > 2,
it is possible to produce an hypersurface of R"*! with volume 1 and arbitrarily large first
nonzero eigenvalue. If n > 3, we can even prescribe the topology.

However, this is an existence result : we cannot draw these examples, and this is even
a question to understand better how they are.

The answer to the first question is also yes, but the generalization is not easy. We will
explain this in Section 4.3, but, in the next section, I will say more about the proof of
Theorem 25 and 26
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4.2 Proof of Theorem 26

We will present the proof of Theorem 26 by using a very classical method coming from
Hersch : the use of coordinates functions (we speak sometimes from barycentric methods).

The idea is to use the restriction to ¥ of the coordinates functions of R*tlas test

functions. If we have
a; — / l’idVE,
by

/E(xz - VOZEZ))dVZ =0,

so that, by a change of coordinates (or by putting the origine at the barycenter of ¥),

we can suppose
by

for i = 1,...,n+ 1 This mean that we have in the hands (n + 1) test functions in order
to find an upper bound for A;(%).

then

We introduce the position vector field X on R™™ given by X (x) = z.
We get immediatly div X =n + 1.
The Green formula says that

/ div XdVg = / (X,v)dVy,
Q

b
where v is the outward normal vector field of ¥ with respect to €.

This implies

(n+1)Vol(Q) < / | X|dVs < Vol(2)1/2(/ | X |2dVs)Y? =
> >

n+1

= Vol(S) ([ (3 at)ave)

At this stage we use the fact that the coordinates functions are of integral 0 on 3. This
implies
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/ \grad x;|%dVs, > )\1(2)/$de2.
5

b
We have

n+1

(n+ 1)Vol(Q2) < Vol(X 1/2/21' )dVs)Y? <

n+1

Vol(%) 1/2 1/2
< (—=F )\1(2> / Z lgrad z;|5dVs)

So we need to control this last term : for xr € X, we introduce an orthonormal basis
Fy, ..., F, of T,,2, and note that grad z; = e; in R"*! but not for the restriction of z; to
2.

We have
grad x; = Z(grad z;, Fj) Fj,
j=1
so that
n+1 n+l n n+1 n

Z|gradwz|z—zz (grad z;, F; ZZ (grad z;, F})* = Z|F|2_n

i=1 j=1 i=1 j=1

We can summarize this by

Vol(¥)? n
M(E) = Vol(Q)? (n+1)?

which is indeed the result of Chavel’s paper.
We immediatly deduce

2

M (D)Vol(D)Ym < — 1 [(Q)*+5,

~ (n+1)2

To finish the proof, we have to study the equality case : to have equality means that all
inequalities become equalities. In particular, at each point x € 3, we have | X| = (X, v).

This implies that X is proportional to v. If we have an hypersurface such that the
position vector is proportional to the normal vector, this is a round sphere.
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4.3 Some generalizations

If we want to generalize these results for other g, it is hopeless to use the same
barycentric method as for A;.

Concerning results of the type Reilly, there were generalized recently by El Soufi,
Harrell and Illias [EHI] : using the recursion formula of Cheng and Yang they proved

Theorem 27. Let M™ be a compact submanifold of R™. Then, for any positive integer k,
A(M) < R(m)|[H(M)|5, k™,
where ||H(M)||s is the L>®-norm of H(M) and R(m) is a constant depending only on m.

Concerning upper bounds in terms of the isoperimetric ratio, we have the following
result in [CEG] (see also El Soufi’s talk in this congress) :

with v, 1S a positive constant depending only on n.

In order to prove this theorem, the idea is again to find a good set of test functions, and,
in order to find these test functions, to find a nice covering of ¥ with disjoint sets. To this
aim, we can use a method developped with D. Maerten in [CMa]. I will not described this
method (this is done in [CMa] and in [CEG]), but I state the main technical construction
because it has a lot of applications, in particular when we try like in the previous theorem
to extend to all eigenvalues a result for the first eigenvalue obtained with a barycentric
methods.

Lemma 29. Let (X, d, p) be a complete, locally compact metric measured space, where
is a finite measure. We assume that for all v > 0, there exists an integer N(r) such that
each ball of radius 4r can be covered by N(r) balls of radius r. If there exist an integer
K >0 and a radius r > 0 such that, for each v € X

w(X)
B < —_
then, there exist K p-measurable subsets Ay, ..., Ax of X such that, Vi < K, u(A;) >

2]%((?())[( and, fori # j, d(A;, A;) > 3r.
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4.4 Some open questions.

Open question 1 : This is a question related to the lecture 4 : there are some results for
A1 obtained with barycentric methods that we are (at the moment) not able to generalize
to other eigenvalues. An emblematic example is a Theorem due to El Soufi and Ilias
[EI2] : they consider a Riemannian manifold (M™, ¢) and look at a Schroedinder operator,
namely A, = A, + ¢ where A, is the usual Laplacian, and ¢ is a C"° potential. We also
denote by ¢ the mean of ¢ on M, namely ¢ = m fM qdVj,.

Then, El Soufi and Ilias study the second eigenvalue of A + ¢, denoted by A\ (A, + q)
(and which correspond to the "usual” A\; when ¢ is 0) for g on the conformal class of a
given metric go.

Theorem 30. We have

VC(go) 2/m =
Vol(M,g) 1

where VC(go) is a conformal invariant, the conformal volume.

M(Bg +q) <m(

They also get some equality case for m > 3 that I do not describe.

To proof this result, they use a barycentric method. It would be great, but this seems
to be not obvious, to generalize this upper bound to other eigenvalues. Even if the metric
g is fixed, an only the potential ¢ may change, this is unknown.

Open question 2 : This question is related to the lecture 3. When we know that the
supremum of the functional Ay is bounded on a certain set of metric (a.e. the conformal
class of a given Riemannian metric), it may be interesting to look at qualitative results
in the spirit of the results obtained with El Soufi, and that I described in lecture 3. I give
two situations where this may be interesting (and not trivial).

Case 1 : We consider the Neumann problem for domains Q(bounded, smooth boundary)
of the hyperbolic space H".

Let

v (V) = supoemn{ve(Q) : Vol(Q =V},

where v, denotes the k-th eigenvalue for the Neumann problem. It is known that this
supremum exists (see for example [CMal).

Then it is interesting to study this spectrum : is vg1 (V) — (V) > 07 If the answer
is yes, it it possible to estimate the gap ? How does v, (V) depend on V' 7
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Note that the same question for the euclidean space is not so interesting : we can do
more or less the same as we did with A. El Soufi for the conformal spectrum.

Case 2 : We consider the set of compact, convex embedded hypersurfaces of the euclidean
space.

Let
Ak = sups{\(2)},

where > describes the set of convex hypersurface of volume 1. It is known that this
supremum exists (see [CDE]).
— What about Ay — A7
— What can be said in the special case of A\; 7 We may think that the supremum is
given by the round sphere.

Open question 3 : A lot of questions concern the Hodge Laplacian, that is the Laplacian
acting on p-form. One interesting question concerns the compact 3-dimensional hyperbolic
manifolds.

It was shown in [CC] that when a family of compact hyperbolic 3-manifolds degenerates
to a non compact manifold of finite volume, it forces the apparition of small eigenvalues
for 1-forms. The eigenvalues we constructed are < d—cg where C'is a universal constant and
d is the diameter.

The question is to decide whether or not we have a lower bound of the type d%, or if

we can construct much smaller eigenvalues.

There are some partial answers in [MG]|, [Ja], but the question is open. One of the
interest is that the topology of the manifolds of the degenerating family will certainly
play a role and has to be well understood and related to the spectrum.
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