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The subject of isoperimetry has a long and eventful history, both for its impact on people’s
imaginations and society in general and for the impetus it has given to the study of various
mathematical subjects.

Isoperimetry began with the problem confronted by Queen Dido, which was to find the shape
of the boundary that should be laid down (using strips of oxhide) to enclose maximum area. If
one assumes a straight coastline, then the answer, which was by all appearances discovered by
Queen Dido, is to lay down the hide in the shape of a semi-circle.

One finds the problem of Queen Dido colorfully described, including various embellishments
of the basic problem, in the expository account that Lord Kelvin gave in 1893 (see http://math.
arizona.edu/~dido/lord-kelvin1894.html). If one takes account that land may vary in value,
or that the coastline may be irregular, one can arrive at various more complicated problems.
In a much more recent exposition, Hildebrandt and Tromba, in their book The Parsimonious
Universe: Shape and Form in the Natural World (originally published as Mathematics and
Optimal Form), give a much more detailed account of isoperimetric problems and their recurrence
throughout history. In particular, it is interesting to see how many walled cities in the Middle
Ages were constructed to have a nearly circular perimeter, or to see in general that the growth
of many cities gave them a nearly circular form.

On the mathematical side, we find already in Euclid (around 300 BC) the proof that among
rectangles of a given perimeter the one having the greatest area is the square. Also, various
writers from antiquity speculated on optimal properties of the honeycombs of bees. When
Thomas Hales proved in 2001 that regular hexagons provide a least-perimeter way to partition
the plane into unit areas, it was the longest standing open problem in mathematics. As for 3D,
Lord Kelvin proposed a solution consisting of relaxed, 14-sided, truncated octahedra. In 1994
D. Weaire and R. Phelan disproved Kelvin’s conjecture by providing a new candidate using both
12- and 14-sided shapes.

1with contributions from Lennie Friedlander, Evans Harrell, Lotfi Hermi, and Frank Morgan.
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Among the ancient Greeks who worked on the isoperimetric problem we mention Zenodorus
(c. 200 - c. 140 BC) who wrote a now-lost treatise On Isoperimetric Figures and Ptolemy (c. 90
- c. 168 AD). It is thanks to Theon of Alexandria (c. 335 - c. 405 AD) who wrote a commentary
on the work of Ptolemy that we know the results of Zenodorus. Al-Kindi, an Arab mathematician
and the son of one of their kings, wrote in the 9th century A Treatise on Isoperimetric Figures
and Isepiphanies, that is solids of given surface. There is also a lost treatise by al-Hasan ibn
al-Haytham (965 - c. 1039). Abu Ja’far al-Khazin, commenting on Ptolemy’s Almagest in the
10th century, generalized earlier works. Johannes de Sacrobosco (John of Holywood, c. 1195 -
c. 1256 AD), an English scholar and astronomer, wrote Tractatus de Sphaera. A commentary
on this treatise, dealing specifically with isoperimetry, can be found in Two New Sciences of
Galileo Galilei published in 1638.

The mathematical study of the isoperimetric problem and related problems really began to
take off with the advent of calculus, when people like Newton, Leibniz, the Bernoullis, and others
developed systematic ways of attacking optimization problems based on the calculus, and within
a few short years were attacking problems in the calculus of variations (that is, the problem of
finding an optimizing path or shape of curve from among some class of curves). For example, the
brachistochrone problem was formulated by Johann Bernoulli and solved by Newton and both
Bernoulli brothers, Jakob (James) and Johann (John). In the same period, the problem of the
shape of a hanging chain (the catenary) was posed and solved, and Newton considered the shape
of projectile which would give the least air resistance (the question of designing the optimal shape
for the nose-cone of a rocket or missile), but without reaching definitive conclusions. Others,
including US President Thomas Jefferson, considered questions such as the optimal shape for
ploughshares.

In the century following the early development of calculus by Newton, Leibniz, the Bernoulli
brothers, and others, the calculus of variations was brought to a relatively advanced state,
especially from the point of view of direct solutions of problems, by Euler and Lagrange. The
explicit solution of the classical isoperimetric problem could be derived in those terms (using
variational theory with a constraint), and many other problems could be formulated and solved.
Euler and Lagrange had shown that all of mechanics could be put into this framework, and
that various physical and mathematical problems could be understood from the point of view
of various optimization or variational principles (recall Fermat’s principle of least time, or, more
generally, the d’Alembert/Maupertuis principle of least action, for which Euler gave the definitive
formulation). Almost a century later, Jacobi and Hamilton also made important contributions
to this area, especially as regards mechanics.

In the nineteenth century Jakob Steiner attacked the classical isoperimetric problem using
direct geometrical tools, which were very suggestive and instructive and led to many further de-
velopments. Around this time, however, Weierstrass realized that there could be subtle problems
involved with attacking certain extremization problems, since it might be that no extremizer ex-
ists. Since that time it has been recognized that the existence question is where one must begin
in attacking many problems from geometry and the calculus of variations. This led to various
existence and uniqueness results, and to the so-called direct methods of the calculus of variations,
wherein one tries to prove existence directly using extremizing sequences and various mathemat-
ical tools (developed by Weierstrass, Schwarz, Poincaré, Hilbert, and their contemporaries, and
also more modern contributors, up to the present time).

A very useful development that came around the turn of the 20th century was Hurwitz’s
realization that the classical isoperimetric problem could be solved relatively simply in terms
of Fourier series and some of their basic properties (e.g., Wirtinger’s inequality). The Fourier
analysis approach to the isoperimetric inequality gave rise to further studies in higher dimensions
where spherical harmonics take the place of Fourier series. This field is nicely summarized from a
modern perspective in Groemer’s book, Geometric Applications of Fourier Series and Spherical
Harmonics.

Also in the nineteenth century the Belgian physicist J. Plateau experimented with soap films
and conjectured that any wire loop (nice closed curve) bounds a soap film or minimal surface
(of mean curvature 0). In 1936 J. Douglas won an inaugural Fields Medal for proving that every
such loop bounds an immersed minimal disc, though his solution admitted self-intersections
of a type which never occur in real soap films. Only with the advent of geometric measure
theory with work of L. C. Young, E. De Giorgi, E. R. Reifenberg, H. Federer, W. Fleming, F.
Almgren, J. Taylor, R. Hardt, L. Simon and others was the general existence of certain soap
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films established. It remains an open question today whether a smooth Jordan curve bounds a
least-area soap film (“(M, 0, δ)-minimal set”).

With a round soap bubble proved by Schwarz in 1884 to be the least-perimeter way to enclose
a given volume of air, the next question was whether the double bubble that forms when two
soap bubbles come together is the least-perimeter way to enclose and separate two given volumes
of air. Years of progress by many mathematicians and undergraduates culminated in the 2002
proof by M. Hutchings, F. Morgan, M. Ritoré, and A. Ros.

From the point of view of engineering and design, perhaps the first truly interesting isoperi-
metric problem was to consider “the shape of the strongest column,” a problem formulated by
Lagrange in 1773 (but not fully solved until much later). In the mid 1800’s T. Clausen was able
to make his way around some of the points that Lagrange had stumbled over, though some ques-
tions have remained about the problem and its resolution up to recent times. See Steve Cox’s
Mathematical Intelligencer article, “The shape of the ideal column” to get a sense of where
things stand currently. Several of the most pertinent recent contributors include J. Keller, I.
Tadjbakhsh, M. Overton, and S. Cox. This problem has to do with the buckling of columns,
and similar problems can be considered for horizontal beams under a variety of loads, and for
plates and other structural members having greater geometrical complexity.

Also in the mid 1800’s, J. C. B. St. Venant put forward the question of finding the cross-
section of a uniform beam or column that would be most resistant to twisting (the so-called
“problem of torsional rigidity”). He conjectured that for a given cross-sectional area, assumed
to be a simply-connected region (and with all other physical parameters held fixed), the shape
giving the greatest torsional rigidity was the circular one. This problem was finally resolved by
George Pólya in 1948 (in the sense that St. Venant had conjectured). Much work has been done
on torsion problems since that time, since it is also of interest to consider non-simply connected
regions and other variations of the basic problem.

A few years after St. Venant considered the torsion problem, Lord Rayleigh set forth (and
formulated conjectures for) (1) the shape of drum that would minimize its fundamental (or
“base”) tone for fixed area (with other physical parameters held fixed), (2) in static electricity, the
shape of capacitor among simply-connected bodies of finite extent that would minimize capacity
for given volume, and (3) the shape of clamped plate that would minimize its fundamental
frequency for given area. In each case Rayleigh conjectured that the minimizing shape was
circular (or spherical, in the case of the 3-dimensional capacitor problem).

Other related problems include the question of what shape minimizes heat loss (described
colorfully by Pólya as the explanation for why a cat curls itself into a ball on a cold winter’s
night) and the shape of a body that minimizes its (gravitational) potential energy.

All of the aforementioned physical problems can be formulated as variational problems, with
many leading directly to eigenvalue problems. In the early part of the 20th century there was
interesting progress on several of these problems, the most spectacular being the solution of the
problem of minimizing the fundamental tone of a drum by Faber and Krahn in independent
papers in the early to mid 1920’s (the answer is that one should take a circular drum of the
given area). Somewhat before Faber and Krahn, Courant had obtained a weaker version of the
result, that for fixed perimeter the way to minimize the fundamental tone was to take a circular
drum. Earlier Poincaré had made progress on the capacity problem, with the full solution due
to Gabor Szegő coming in 1930.

Around 1950, Pólya and Szegő took on the job of studying and systematizing prior works
on physical isoperimetric problems, and of advancing the field on a wide front. Their book
Isoperimetric Inequalities in Mathematical Physics, published at that time, is a classic of the
field. The techniques that they put at the forefront included Steiner symmetrization, and,
generally, rearrangement inequalities. It could quite justifiably be said that all modern work on
isoperimetric inequalities for physical quantities builds on the work of Pólya and Szegő and their
collaborators. Pólya and Szegő’s book contains, for example, the solutions to the St. Venant and
capacity problems mentioned above.

Pólya and Szegő’s interest in the subject stimulated interest by others and led to many im-
portant and interesting develoments in the field. Perhaps foremost among the early contributors
to these developments are Payne, Hersch, and Weinberger, who participated in many of the ad-
vances and inspired their students and others to enter the field. Thus we find Payne, Pólya, and
Weinberger obtaining very simple and nice universal inequalities for combinations of eigenvalues
in the mid-50’s, and conjecturing what the sharp forms of certain of these inequalities might
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be. This leads one into the subject of isoperimetric inequalities for eigenvalue ratios, which at-
tracted considerable interest (particularly the ratio λ2/λ1) and was finally solved by Ashbaugh
and Benguria in 1990. Following a significant advance in work of H. C. Yang in the early 90’s,
the subject of universal eigenvalue inequalities has taken off, with many papers contributing to
and advancing the subject, and with much work continuing to the present day. The work of
Yang has allowed researchers to make fundamental connections between the field of universal
eigenvalue inequalities and the subject of eigenvalue asymptotics, as begun by Hermann Weyl
around 1910. This, too, is a burgeoning field, with key recent contributors including Q. M.
Cheng and H. C. Yang, E. M. Harrell and L. Hermi, E. M. Harrell and J. Stubbe, and several
others.

Conformal methods play an important role in the study of two-dimensional problems. Szegő
used them to prove that the disk minimizes µ1(Ω)−1 +µ2(Ω)−1 in the class of simply connected
planar domains of given area (here the µj ’s are the positive eigenvalues of the Neumann Lapla-
cian). Hersch proved that the smallest positive eigenvalue of the Laplace–Beltrami operator on
a two-sphere cannot exceed the one of the operator for the round metric of the same area. The
crucial observation is that the numerator in the Rayleigh quotient,

∫
|∇u|2dx, is conformally

invariant when the dimension equals 2. P. C. Yang and S.-T. Yau proved that the first positive
eigenvalue on a surface of genus g of given area has an upper bound; moreover, they gave a pre-
cise bound. In the case g = 2, Jacobson, Levitin, Nadirashvili, Nigam, and Polterovich proved
that Yang and Yau’s bound is sharp, and it is saturated on a singular metric on a surface of
conformal type of y2 = x5 − x. Their proof relied on some numerics. It would therefore be
interesting to have a numerics-free proof. In the case when the dimension of a manifold is higher
than 2, Urakawa proved that, in the class of metrics of fixed volume, the first positive eigenvalue
of the Laplacian can be arbitrarily large. However, within a given conformal class, it is bounded,
and these upper bounds are bounded from below when one varies conformal classes (Friedlan-
der, Nadirashvili). Recently, Colbois, Dryden, and El Soufi studied bounds for eigenvalues of
the Laplacian for G-invariant metrics in a certain conformal class. Here G is a Lie group acting
on a manifold.

Obviously there are many other topics that figure in the history of isoperimetric problems
and related areas and the most we could do here was point out some of the highlights. To help
make up for the deficiencies of such coverage, we conclude with a brief summary of some of the
relevant literature, which it is hoped can be used to widen the coverage and give hints of other
worthy topics in the general area. For historical orientation, we recommend the article by Lord
Kelvin and the expository book by Hildebrandt and Tromba (both mentioned earlier).

For further background on the classical isoperimetric problem one cannot do better than to
consult the book of Burago and Zalgaller, Geometric Inequalities, and the 1978 review article in
the Bulletin of the American Mathematical Society by Robert Osserman, “The isoperimetric in-
equality.” Other books and articles of interest include Tikhomirov’s Stories of Maxima and Min-
ima, Pólya’s Mathematics and Plausible Reasoning (in 2 vols.; the most relevant sections of this
can be found at the conference website, http://math.arizona.edu/~dido/polya1954.html),
and Pólya’s article “Circle, sphere, symmetrization, and some classical physical problems”, or
D. Pedoe’s Circles: A Mathematical View and N. Kazarinoff’s Geometric Inequalities. For as-
pects of the isoperimetric problem occurring in the setting of Riemannian geometry one can
consult the books of Chavel (Eigenvalues in Riemannian Geometry, Riemannian Geometry: A
Modern Introduction, and Isoperimetric Inequalities: Differential Geometric and Analytic Per-
spectives) and of Marcel Berger (A Panoramic View of Riemannian Geometry; or see his books
Geometry I and II for much useful related information, mostly in the classical setting). Chavel’s
book Eigenvalues in Riemannian Geometry includes topics that extend well into the domain of
isoperimetric inequalities for physical quantities.

For modern developments in minimal surface theory and much more, one cannot do better
than to consult Almgren’s Plateau’s Problem: An Invitation to Varifold Geometry, and Morgan’s
Geometric Measure Theory: A Beginner’s Guide (fourth edition, 2009). Beyond that one has
Federer’s classic Geometric Measure Theory. For the more classical background in minimal
surface theory, there are a number of books and articles, among which we mention Osserman’s
Survey of Minimal Surfaces (updated edition, Dover, 1986).

On the side of isoperimetric inequalities for physical quantities one can find much of interest in
the works of Pólya and Chavel already mentioned. In the 1960’s and beyond, a key role was filled
by Payne’s SIAM Review paper, “Isoperimetric inequalities and their applications.” This paper
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provides the background and setting for many physical isoperimetric problems (including their
mathematical formulation), and also states a variety of open problems and conjectures. In 1991,
Payne updated his discussion of many of these problems in his contribution “Some comments on
the past fifty years of isoperimetric inequalities” to the book Inequalities: Fifty Years on from
Hardy, Littlewood and Pólya, edited by W. N. Everitt. Beyond that, one has the books of C.
Bandle (Isoperimetric Inequalities and Applications), R. Sperb (Maximum Principles and Their
Applications), and B. Kawohl (Rearrangements and Convexity of Level Sets in PDE), dating to
the early to mid 80’s, and the more recent books of D. Bucur and G. Buttazzo (Variational
Methods in Shape Optimization Problems), A. Henrot (Extremum Problems for Eigenvalues of
Elliptic Operators), and S. Kesavan (Symmetrization and Applications).

Finally, we mention the excellent book by Lieb and Loss, Analysis, second edition, which
covers much of interest in the field of symmetrization and rearrangements in the context of
the classical inequalities of analysis and mathematical physics, as well as much else besides.
In particular, the book covers the problems of minimizing capacity and gravitational potential
energy, and has a full discussion of Lieb–Thirring inequalities and their relation to the question
of the stability of matter.

Detail from a sketch made in commemoration of Carlos Quintos’ campaign on the
doubled-walled city of Tunis, clearly satisfying the isoperimetric property of the
circle. (31 August 1535).
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