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Circular shapes are extremals for many problems
under the assumptions of fixed area.

"The isoperimetric theorem, deeply rooted in
our experience and intuition so easy to
conjecture, but not so easy to prove, is an
inexhaustible source of inspiration."

G. Pólya: Mathematics and Plausible
Thinking
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Brownian motion killed 
upon leaving D

Question
Assuming same volume, which of the following figures has the largest
survivable time and where should the "random walker" start to
maximized its chances of being alive by time t?

Answer is “obvious": Right hand shape starting at the origin.
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Finite dimensional distributions

“Theorem" (Fixed volume)
The finite dimensional distributions of a large class of Lévy processes,
including all subordinations of Brownian motion such relativistic
Brownian motion, stable processes, and their relativistic versions, are
majorized by those of their symmetrized versions in symmetrized sets.

More precisely

Theorem 1
For any Lévy process Xt with Lévy measure absolutely continuous to
the Lebegue measure it holds that for any m and any open sets
Dj ⊂ Rd , 1 ≤ j ≤ m, D∗ = ball same volume

Pz{Xt1 ∈ D1, . . . ,Xtm ∈ Dm} ≤ P0{X ∗t1 ∈ D∗1, . . . ,X
∗
tm ∈ D∗m}

for all times 0 < t1 < t2 < · · · < tm <∞, where X ∗t is a rotationally
symmetric process constructed from Xt .
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For any D, let dD(z) be the distance from z ∈ D to the boundary ∂D.
Set

rD = sup
z∈D

dD(z)

For a large class of domains D (not all)

λ1(D) ≈ 1
r2
D

In fact for all simply connected domains D in the plane, (R.B.–T. Carroll
(1994))

0.6194
r2
D

≤ λ1(D) ≤
j20
r2
D

Question
Amongst the class of all simply connected plane domains with fixed
inradius “which one(s)" maximize “lifetime" or minimize the eigenvalue?
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Theorem 2 (Fixed inradius)

D ⊂ Rd iconvex with inradius rD <∞. For any subordination of
Brownian motion Xt and 0 < t1 < t2 < · · · < tm <∞

Pz{Xt1 ∈ D, . . . ,Xtm ∈ D} ≤ P0{Xt1 ∈ SrD , . . . ,Xtm ∈ SrD},
SrD = Rd−1 × (−rD, rD) = infinite strip (slab) of width 2rD.

1 These give the classical isoperimetric inequality (Dido’s property),
Pólya-Szegö isoperimetric capacity, Faber-Krahn, heat kernels,
Greens functions, trace of semigroups (including Schrödinger),...

2 Of interest here is the case when the generator of the process is
not a local operator such as fractional powers of the Laplacian or
any “subordinations" of the Brownian motion.

3 Fixed volume "generalized" Heat Kernel isoperimetry inequalities
for the Laplacian and elliptic operators in domains of Rn, spheres,
hyperbolic space, etc., have been proved by many people:
Luttinger, Friedberg-Luttinger, Talenti, Bandle, Brock-Solynin,
Morpurgo, Burchard-Schmuckenschläger, . . .
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Theorem (For Brownian motion)
Amongst all regions D of fixed volume the ball maximizes the lifetime
of Brownian motion in the distribution sense. That is, for all D, t > 0,
x ∈ D,

Px{τD > t} ≤ P0{τD∗ > t} (1)

∫
D

Px{τD > t}dx ≤
∫

D∗
Px{τD∗ > t}dx (2)

(1) ⇐⇒ P0{τD∗ ≤ t} ≤ Px{τD ≤ t} (3)

(4) ⇐⇒
∫

D∗
Px{τD∗ ≤ t}dx ≤

∫
D

Px{τD ≤ t}dx (4)

Known

lim
t→0

1√
t

∫
D

Px{τD ≤ t}dx =
2√
π
σ(∂D)
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lim
t→0

1√
t

∫
D

Px{τD ≤ t}dx =
2√
π
σ(∂D)

1 Proved by many authors in different settings, over several years, It
holds for a domain with Lipschitz boundary.

lim
t→∞

1
t

log Px{τD > t} = −λ1(D), x ∈ D

2 Also probably first noticed, in the general setting by M. Kac.

lim
t→∞

eλ1(D)tPx{τD > t} = ϕ(x)

∫
D
ϕ1(y)dy , x ∈ D

3 ϕ1 is the ground state eigenfunctions corresponding to λ1(D).
This convergence is uniformly in x ∈ D for many D’s but not all!
Follows from “intrinsic-ultracontractivity".
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In term of Dirichlet heat kernel PD
t (x , y) for Laplacian in D

Px{τD > t} ≤ P0{τD∗ > t}, ⇐⇒∫
D

PD
t (x , y)dy ≤

∫
D∗

PD
t (0, y)dy ,

and ∫
D

Px{τD > t}dx ≤
∫

D∗
Px{τD∗ > t}dx ⇐⇒∫

D

∫
D

PD
t (x , y)dx dy ≤

∫
D∗

∫
D∗

PD
t (x , y) dx dy .

Remark
Special cases of more general inequalities in C. Bandle’s “Isoperimetric
inequalities and applications" Ch IV for uniformly elliptic operator with
bounded measurable coefficients with ellipticity constant 1. That is,

L =
∑
j,k

∂j
(
aj k∂k

)
,

∑
j,k

aj kξjξk ≥ |ξ|2.

Rodrigo Bañuelos (Purdue University) Isopermetric & Lévy Carthage, May 2010 10 / 33



In term of Dirichlet heat kernel PD
t (x , y) for Laplacian in D

Px{τD > t} ≤ P0{τD∗ > t}, ⇐⇒∫
D

PD
t (x , y)dy ≤

∫
D∗

PD
t (0, y)dy ,

and ∫
D

Px{τD > t}dx ≤
∫

D∗
Px{τD∗ > t}dx ⇐⇒∫

D

∫
D

PD
t (x , y)dx dy ≤

∫
D∗

∫
D∗

PD
t (x , y) dx dy .

Remark
Special cases of more general inequalities in C. Bandle’s “Isoperimetric
inequalities and applications" Ch IV for uniformly elliptic operator with
bounded measurable coefficients with ellipticity constant 1. That is,

L =
∑
j,k

∂j
(
aj k∂k

)
,

∑
j,k

aj kξjξk ≥ |ξ|2.

Rodrigo Bañuelos (Purdue University) Isopermetric & Lévy Carthage, May 2010 10 / 33



Why finite dimensional distributions?

Observed by many including Aizenman and Simon who first wrote it
down

Px{τD > t} = Px{Bs ∈ D; ∀s,0 < s ≤ t}

= lim
m→∞

Px{Bjt/m ∈ D, j = 1,2, . . . ,m}

= lim
m→∞

∫
D
· · ·
∫

D
pt/m(x − x1) · · · pt/m(xm − xm−1)dx1 . . . dxm

pt (x) =
1

(2π)d/2

∫
Rd

e−iξ·xe−t |ξ|2dξ =
1

(4πt)d/2 e−|x |
2/4t

In fact: (Via Brownian bridge or Trotter product formula)

pD
t (x , y) = lim

m→∞

∫
D
· · ·
∫

D
p2

t/m(x − x1) · · · p2
t/m(y − xm−1)dx1 . . . dxm−1,
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Theorem (Luttinger 1973)

Let f1, . . . , fm be nonnegative functions in Rd . For any x0 ∈ D we have∫
Dm

m∏
j=1

fj(xj−xj−1)dx1 · · · dxm ≤
∫
{D∗}m

f ∗1 (x1)
m∏

j=2

f ∗j (xj−xj−1)dx1 · · · dxm.

D∗=ball center at zero and and same volume as D

Theorem (Brascamp–Lieb–Luttinger (1975), (1977))

∫
(Rd )m

m∏
j=1

fj

(
k∑

i=1

bjixi

)
dx1 · · · dxk ≤

∫
(Rd )m

m∏
j=1

f ∗j

(
k∑

i=1

bjixi

)
dx1 · · · dxk ,

for all positive integers k ,m, and any m × k matrix B = [bji ].
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Roots lie in inequalities of Hardy–Littlewood–Pólya–Riesz∫
Rd

∫
Rd

F1(x1)H(x2 − x1)F2(x2)dx1dx2 ≤ ∗

Theorem (R. B. Latala, Méndez, 2001 (d = 2), Méndez 2003, d ≥ 3)

D ⊂ Rd convex inradius rD <∞, S = Rd−1 × (−rD, rD) infinite strip. Let
f1, . . . , fm be nonnegative radially symmetric decreasing on Rd . For any
x0 ∈ Rd , ∫

D
· · ·
∫

D

m∏
j=1

fj(xj − xj−1) dx1 · · · dxm ≤

∫
S
. . .

∫
S

f1(x1)
m∏

j=2

fj(xj − xj−1) dx1 · · · dxm.
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Lévy Processes

Constructed by Paul Lévy in the 30’s (shortly after Wiener constructed
Brownian motion). Other names: de Finetti, Kolmogorov,
Khintchine, Itô.

1 Rich stochastic processes, generalizing several basic processes
in probability: Brownian motion, Poisson processes, stable
processes, subordinators, . . .

2 Regular enough for interesting analysis and applications. Their
paths consist of continuous pieces intermingled with jump
discontinuities at random times. Probabilistic and analytic
properties studied by many.

3 Many Developments in Recent Years:
Applied: Queueing Theory, Math Finance, Control Theory, Porous
Media . . .

Pure: Investigations on the “fine" potential and spectral theoretic
properties for subclasses of Lévy processes
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Definition

A Lévy Process is a stochastic process X = (Xt ), t ≥ 0 with
1 X has independent and stationary increments

2 X0 = 0 (with probability 1)

3 X is stochastically continuous: For all ε > 0,

lim
t→s

P{|Xt − Xs| > ε} = 0

Note: Not the same as a.s. continuous paths. However, it gives
“cadlag" paths: Right continuous with left limits.
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Stationary increments: 0 < s < t <∞, A ∈ Rd Borel

P{Xt − Xs ∈ A} = P{Xt−s ∈ A}

Independent increments: For any given sequence of ordered times

0 < t1 < t2 < · · · < tm <∞,

the random variables

Xt1 − X0, Xt2 − Xt1 , . . . ,Xtm − Xtm−1

are independent.

The characteristic function of Xt is

ϕt (ξ) = E
(
eiξ·Xt

)
=

∫
Rd

eiξ·xpt (dx) = (2π)d/2p̂t (ξ)

where pt is the distribution of Xt . Notation (same with measures)

f̂ (ξ) =
1

(2π)d/2

∫
Rd

eix·ξf (x)dx , f (x) =
1

(2π)d/2

∫
Rd

e−ix·ξf (ξ)dξ
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The Lévy–Khintchine Formula

The characteristic function has the form ϕt (ξ) = e−tρ(ξ), where

ρ(ξ) = −ib · ξ + 〈A · ξ, ξ〉+

∫
Rd

(
1− eiξ·x + iξ · x1{|x |<1}(x)

)
ν(dx)

for some b ∈ Rd , a non–negative definite symmetric n × n matrix A
and a Borel measure ν on Rd with ν{0} = 0 and∫

Rd
min

(
|x |2,1

)
ν(dx) <∞.

ρ(ξ) is called the symbol of the process or the characteristic
exponent. The triple (b,A, ν) is called the characteristics of the
process.

Converse also true. Given such a triplet we can construct a Lévy
process.
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Examples

1. Standard Brownian motion:
With (0, I,0), I the identity matrix,

Xt = Bt , Standard Brownian motion

2. Gaussian Processes, “General Brownian motion":
(0,A,0), Xt is “generalized" Brownian motion, mean zero,
covariance

E(X j
sX i

t ) = aij min(s, t)

Xt has the normal distribution (assume here that det(A) > 0)

1
(2πt)d/2

√
det(A)

exp
(
− 1

2t
x · A−1x

)

3. “Brownian motion" plus drift: With (b,A,0) get gaussian
processes with drift:

Xt = bt + Gt
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4. Poisson Process: Poisson Process Xt = πt (γ) of intensity γ > 0
is a Lévy process with (0,0, γδ1) where δ1 is the Dirac delta at 1.

P{πt (γ) = m} =
e−γt (γt)m

m!
, m = 1,2, . . .

πt continuous paths except for jumps of size 1 at the random times

τm = inf{t > 0 : πt (γ) = m}
5. Compound Poisson Process Let Y1,Y2, . . . be i.i.d. and

independent of the πt with distribution ν.

Xt = Y1 + Y2 + · · ·+ Yπt (γ) = Sπt (γ)

E [eiξ·Xt ] =
∞∑

m=0

P{πt = m}E [eiξ·Sm ]

=
∞∑

m=0

e−γt (γt)m

m!
(ν̂(ξ))m = e−γt(1−bν(ξ))

⇒ ρ(ξ) = γ

∫
Rd

(
1− eix ·ξ

)
ν(dx)
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6. Relativistic Brownian motion According to quantum mechanics,
a particle of mass m moving with momentum p has kinetic energy

E(p) =
√

m2c4 + c2|p|2 −mc2

where c is speed of light. Then ρ(p) = −E(p) is the symbol of a
Lévy process, called “relativistic Brownian motion."

7. The rotationally invariant stable processes: These are
self–similar processes, denoted by Xα

t , in Rd with symbol

ρ(ξ) = −|ξ|α, 0 < α ≤ 2.

α = 2 is Brownian motion. α = 1 is the Cauchy processes.
Transition probabilities:

Px{Xα
t ∈ A} =

∫
A

pαt (x − y)dy , any Borel A ⊂ Rd

pαt (x) =
1

(2π)d

∫
Rd

e−iξ·xe−t |ξ|αdξ
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p2
t (x) =

1
(4πt)d/2 e−

|x|2
4t , α = 2, Brownian motion

p1
t (x) =

Cd t

(|x |2 + t2)
d+1

2

, α = 1, Cauchy Process

For any a > 0, the two processes

{X(at) ; t ≥ 0} and {a1/αXt ; t ≥ 0},

have the same finite dimensional distributions (self-similarity).

In the same way, the transition probabilities scale similarly to
those for BM:

pαt (x) = t−d/αpα1 (t−1/αx)
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8. Subordinators
A subordinator is a one-dimensional Lévy process {Tt} such that (i)
Tt ≥ 0 a.s. for each t > 0 and (ii)] Tt1 ≤ Tt2 a.s. whenever t1 ≤ t2

Theorem (Laplace transform characterization)

E(e−λTt ) = e−tψ(λ), λ > 0,

ψ(λ) = bλ+

∫ ∞
0

(
1− e−λs

)
ν(ds)

b ≥ 0 and the Lévy measure satisfies ν(−∞,0) = 0 and∫∞
0 min(s,1)ν(ds) <∞. ψ is called the Laplace exponent of the

subordinator.

Example (α/2–Stable subordinator): ψ(λ) = λα/2, 0 < α < 2 gives
the with b = 0 and

ν(ds) =
α/2

Γ(1− α/2)
s−1−α/2 ds

Example 2 (Relativistic stable subordinator): 0 < α < 2 and m > 0,
Ψ(λ) = (λ+ m2/α)α/2 −m.

ν(ds) =
α/2

Γ(1− α/2)
e−m2/αs s−1−α/2ds
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ν(ds) =
α/2

Γ(1− α/2)
e−m2/αs s−1−α/2ds

Example 3 (Gamma subordinator): Ψ(λ) = log(1 + λ).

ν(ds) =
e−s

s
ds

Many others: “Geometric stable subordinators, iterated
geometric stable subordinators, Bessel subordinators,. . . "

Theorem
If X is an arbitrary Lévy process and T is a subordinator
independent of X , then Zt = XTt is a Lévy process.

pZt (A) =

∫ ∞
0

pXs (A)pTt (ds)

If Xt = Brownian motion, Zt is called subordinate Brownian motion.
α/2 subordinator gives the α-rotationally invariant stable process
and pαt (x − y) =

∫∞
0 p2

s (x − y)gα/2(t , s)ds, 0 < α < 2.
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Lévy semigroup

Tt f (x) =

∫
Rd

f (x + y)pt (dy) = pt ∗ f (x) =
1

(2π)d

∫
Rd

e−ix ·ξetρ(ξ) f̂ (ξ)dξ

with generator

Af (x) =
∂Tt f (x)

∂t

∣∣∣
t=0

= lim
t→0

1
t

(
Ex [f (X (t)]− f (x)

)
=

1
(2π)d

∫
Rd

e−ix ·ξρ(ξ)f̂ (ξ)dξ

A pseudo diff operator, in general
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From the Lévy–Khintchine formula (and properties of the Fourier
transform),

Af (x) =
∑
i=1

bi∂i f (x) +
∑
i,j

ai,j∂i∂j f (x)

+

∫ [
f (x + y)− f (x)− y · ∇f (x)χ{|y |<1}

]
ν(dy)

1 Standard Brownian motion (running at twice the usual speed):

Af (x) = ∆f (x)

2 Poisson Process of intensity γ:

Af (x) = γ
[
f (x + 1)− f (x)

]
3 Rotationally Invariant Stable Processes of order 0 < α < 2,

Fractional Diffusions:

Af (x) = −(−∆)α/2f (x)

= Aα,d
∫

f (y)− f (x)

|x − y |d+α
dy
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Lévy symmetrization

Lemma
Suppose ν is absolutely continuous with respect to Lebesgue measure
with density φ(x). Then φ∗(x) dx is also a Lévy measure.

Set A∗ = (det A)1/d Id and define X ∗t to be the (rotationally invariant)
Lévy process in Rd associated to the triple (0,A∗, φ∗(x)dx).

ρ∗(ξ) = 〈A∗ · ξ, ξ〉+

∫
Rd

[
1− ei ξ·x

]
φ∗(x) dx

= 〈A∗ · ξ, ξ〉+

∫
Rd

[ 1− cos(ξ · x) ]φ∗(x) dx ,

using the fact that φ∗ is symmetric and y → sin(ξ · x) is antisymmetric.
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Theorem

Ez

[
m∏

i=1

fi(Xti )

]
≤ E0

[
m∏

i=1

f ∗i (X ∗ti )

]
,

for all 0 ≤ t1 ≤ . . . ≤ tm.

Remark (Outline of proof)
The building blocks for Lévy processes are compound Poisson
processes and Gaussian processes. Compound Poisson are random
walks ran up to a Poisson process. The following is a key lemma.

Remark
We refer to Bañuelos and P. Méndez-Hernández, JFA 2010, for details
and careful statements of all results below. Here we only illustrate,
largely abusing precision and rigor.
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Lemma (Sn = X1 + X2 + · · ·+ Xn, Xi iid ≈ φ(x)dx)

k1 ≤ . . . ≤ km nonnegative integers.

E

[
m∏

i=1

fi(x0 + Ski )

]
≤ E

[
m∏

i=1

f ∗i (S∗ki
)

]
,

Same as ∫
Rd
. . .

∫
Rd

 m∏
i=1

fi

 ki∑
j=0

xj

 km∏
i=1

φ(xi) dx1 . . . dxkm

≤
∫

Rd
. . .

∫
Rd

 m∏
i=1

f ∗i

 ki∑
j=1

xj

 km∏
i=1

φ∗(xi) dx1 . . . dxkm

Ex

[
m∏

i=1

fi(Sπti
)

]
=

∞∑
k1≤k2≤...≤km

P [πt1 = k1, . . . , πtm = km] E

[
m∏

i=1

fi(x + Ski )

]
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Consequences

τX
D = inf {t > 0 : Xt /∈ D}

1 If ψ is a nonnegative increasing function, then

Ez
[
ψ
(
τX

D

) ]
≤ E0

[
ψ
(
τX∗

D∗

) ]
,

for all z ∈ D. In particular for all 0 < p <∞.

Ez
[(

τX
D

)p
]
≤ E0

[(
τX∗

D∗

)p
]
.

2 For all z ∈ D, t > 0 and nonnegative Borel functions f ,∫
D

f (w) pX
D (t , z,w) dw ≤

∫
D∗

f ∗(w) pX∗
D∗ (t ,0,w) dw , (5)

pX
D (t , z,w) “heat kernel" for killed “heat" semigroup

Tt f (x) = Ex

[
f (Xt ); τX

D > t
]
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3 If Xt and X ∗t are transient, then∫
D

f (w)GX
D (z,w) dw ≤

∫
D∗

f ∗(w)GX∗
D∗ (0,w) dw , (6)

GX
D (z,w), GX∗

D∗ (0,w) Green’s functions for Xt , X ∗t , respectively.
4 By (5), (6) and Alvino-Trombetti-Lions (1989) for all increasing

convex functions Ψ : R+ → R+,∫
D

Ψ
(

pX
D (t , z,w)

)
dw ≤

∫
D∗

Ψ
(

pX∗
D∗ (t ,0,w)

)
dw ,

and ∫
D

Ψ
(

GX
D (z,w)

)
dw ≤

∫
D∗

Ψ
(

GX∗
D∗ (w ,0)

)
dw ,

(For elliptic operators these hold for all nonnegative increasing
functions, See C. Bandle, page 214.)
Similar inequalities for trace (including “Schródinger
perturbations"), heat content, torsional rigidity, Faber-Krahn, . . .
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For Subordination of BM
The Finite dimensional distributions of subordinate Brownian motion
are integrals of the finite dimensional distributions of Brownian motion.

Thus for α-stable, for example

Px{Xα
t1 ∈ D1, . . . ,Xα

tm ∈ Dm}

=

∫ ∞
0

. . .

∫ ∞
0

Px{Bs1 ∈ D1,B(s1+s2) ∈ D2, . . . ,B(s1+s2+···+sn) ∈ Dm}

×
m∏

i=1

gα/2(ti − ti−1, si) ds1 . . . dsm.
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Theorem (Subordination of Brownian motion, convex, fixed inradius)

If Xt = BTt subordinate Brownian motion then the equalities hold for
convex domains D of fixed inradius rD with D∗ replaced by strip.

In
particular, for stable order 0 < α ≤ 2 for all x ∈ D and all t > 0,
IrD = (−rD, rD) , SrD = Rd−1 × (−rD, rD)

Px{ ταD > t } ≤ P0{ ταSrD
> t } = P0{ ταIrD > t }

Corollary (Fractional Laplacian in convex domains of fixed inradius)

λD,α the first Dirichlet eigenvalue for (−∆)α/2, 0 < α ≤ 2 in D:

λIrD ,α
≤ λD,α

for α = 2, the eigenvalue inequality is well known (Hersh, Protter, . . . )
For α = 2, the exit time distribution proved by R.B, Latała,
Méndez-Hernández(d = 2) and R.B. Kröger (d > 2) and for all
0 < α ≤ 2 and all d by Méndez-Hernández.
For α = 2 and d = 2, Green function inequalities were proved by R.B-T.
Carroll-E. Housworth.
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Problem
Determine conditions for equality.

Remark
For stable processes the case of equality has been studied by Porpurgo in his
Duke 2002 paper; (see also Burchard and Schmuckenschläger 2003 for
Brownian motion). A general “Lieb formula" is also studied by Morpurgo.
Such formula probably holds here but this has not being written down yet.

Conjecture
The inequalities∫

D
Ψ
(

pX
D (t , z,w)

)
dw ≤

∫
D∗

Ψ
(

pX∗
D∗ (t ,0,w)

)
dw ,

and ∫
D

Ψ
(

GX
D (z,w)

)
dw ≤

∫
D∗

Ψ
(

GX∗
D∗ (w ,0)

)
dw ,

should hold for all increasing functions Ψ : R+ → R+ and not just for convex
increasing. Open even for stable processes!
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