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Dirichlet eigenvalues
0 < λ1 < λ2 ≤ λ3 ≤ · · · → ∞

Faber–Krahn inequality
Among all plane domains,

λ1A is minimal for disk

Pólya–Szegő inequality
Among all triangles,

λ1A is minimal for equilateral triangle

Want inequalities for higher eigenvalues too, for example
(λ1 + · · ·+ λn).

First attempt: (λ1 + λ2)A is not minimal for disk. . .
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Second attempt:
to extend from fundamental tone to higher eigenvalues, weaken the
geometric normalization from area to diameter. . .

Faber–Krahn for diameter

Among plane domains, λ1D2 is minimal for disk.
Proof. λ1D2 = (λ1A)(D2/A), where D2/A is minimal for disk by
isodiametric inequality

Pólya–Szegő for diameter

Among triangles, λ1D2 is minimal for equilateral.

Theorem (Laugesen–Siudeja 2010)
Among triangles, the higher eigenvalue sum

(λ1 + · · ·+ λn)D2

is minimal for equilateral, for each n = 1,2,3, . . .
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Theorem (Laugesen–Siudeja 2010)

Among triangles, (λ1 + · · ·+ λn)D2 is minimal for equilateral.

Comments

Geometrically sharp, for each fixed n.
Not asymptotically sharp as n→∞, since Weyl asymptotic
depends on area (not diameter).
Different from Li–Yau, whose lower bound on (λ1 + · · ·+ λn)A is
asymptotically sharp but not geometrically sharp.

Proof Step 1 — Reduction to isosceles with aperture angle < π/3

D

D

< D
Stretch arbitrary triangle to
isosceles with same diameter.
Eigenvalues decrease,
by domain monotonicity.
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Step 2 — Isosceles with aperture in (π/6, π/3)

(0, h)

(−1/2, 0) (1/2, 0)

T− T+

Te

Transplant with linear maps

Linearly map to isosceles from
equilateral and from 30-60-90◦

right triangles

Transplanted eigenfunctions of
isosceles provide trial functions
for equilateral and 30-60-90◦

triangle
Eigenvalues of equilateral and
30-60-90◦ triangle are known
explicitly

Method of the Unknown Trial Function

R. S. Laugesen (University of Illinois) Sharp lower bounds on Laplace eigenvalues Carthage, May 27, 2010 5 / 13



Step 2 — Isosceles with aperture in (π/6, π/3)

(0, h)

(−1/2, 0) (1/2, 0)

T− T+

Te

Transplant with linear maps

Linearly map to isosceles from
equilateral and from 30-60-90◦

right triangles
Transplanted eigenfunctions of
isosceles provide trial functions
for equilateral and 30-60-90◦

triangle

Eigenvalues of equilateral and
30-60-90◦ triangle are known
explicitly

Method of the Unknown Trial Function

R. S. Laugesen (University of Illinois) Sharp lower bounds on Laplace eigenvalues Carthage, May 27, 2010 5 / 13



Step 2 — Isosceles with aperture in (π/6, π/3)

(0, h)

(−1/2, 0) (1/2, 0)

T− T+

Te

Transplant with linear maps

Linearly map to isosceles from
equilateral and from 30-60-90◦

right triangles
Transplanted eigenfunctions of
isosceles provide trial functions
for equilateral and 30-60-90◦

triangle
Eigenvalues of equilateral and
30-60-90◦ triangle are known
explicitly

Method of the Unknown Trial Function

R. S. Laugesen (University of Illinois) Sharp lower bounds on Laplace eigenvalues Carthage, May 27, 2010 5 / 13



Step 2 — Isosceles with aperture in (π/6, π/3)

(0, h)

(−1/2, 0) (1/2, 0)

T− T+

Te

Transplant with linear maps

Linearly map to isosceles from
equilateral and from 30-60-90◦

right triangles
Transplanted eigenfunctions of
isosceles provide trial functions
for equilateral and 30-60-90◦

triangle
Eigenvalues of equilateral and
30-60-90◦ triangle are known
explicitly

Method of the Unknown Trial Function

R. S. Laugesen (University of Illinois) Sharp lower bounds on Laplace eigenvalues Carthage, May 27, 2010 5 / 13



Method of the Unknown Trial Function
Orthonormal eigenfunctions u1,u2, . . . of isosceles .

Transplant each uj with linear transformation Te. These trial
functions are orthogonal on equilateral = T−1

e ( ) and satisfy
Dirichlet boundary condition.
Rayleigh principle implies

λ1 + · · ·+ λn| ≤ R[u1 ◦ Te] + · · ·+ R[un ◦ Te]

Left side is known. Right side is unknown.
Also, on right side we really want R[u1] + · · ·+ R[un].
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What does right side tell us?

λ1 + · · ·+ λn| ≤ R[u1 ◦ Te] + · · ·+ R[un ◦ Te]

≤ X +

(
h√
3/2

)2

Y

where

X =
n∑

j=1

∫
u2

j,x dA Y =
n∑

j=1

∫
u2

j,y dA

Transplantation to right triangles similarly gives

λ1 + · · ·+ λn| ≤
13
12

X +
4h2

12
Y .

We want
λ1 + · · ·+ λn| ≤ (X + Y )D2

where D2 = h2 + (1
2)

2.
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Define ratio

γn
def
=

(λ1 + · · ·+ λn)|
(λ1 + · · ·+ λn)|

Then previous slide says

λ1 + · · ·+ λn| ≤ X +
4h2

3
Y

λ1 + · · ·+ λn| ≤
(

13
12

X +
4h2

12
Y
)/

γn

We need at least one of right sides to be < (X + Y )(h2 + (1
2)

2).
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Thus we need

3
4
≥ Y

X + Y
or

Y
X + Y

≥ 13− 3γn(1 + 4h2)

13− 4h2

Bad News: we cannot evaluate this fraction Y/(X + Y ) of the Rayleigh
quotient, on the isosceles triangle.
Good News: suffices to prove

3
4
≥ max

h

13− 3γn(1 + 4h2)

13− 4h2

Equivalently, prove

γn =
λ1 + · · ·+ λn|
λ1 + · · ·+ λn|

≥ 11
24

More good news:
γn → 12/24 as n→∞ by Weyl, since area( ) = 2 area( ).
Make rigorous using counting function, explicit formulas.
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Summary — Method of the Unknown Trial Function
“interpolates” between two “endpoint” domains whose eigenvalues
we know
applies to linear transformations of arbitrary domains, not just
triangles
could be used on nonlinear transformations too?
applies also to Neumann eigenvalues

Second eigenvalue
We have shown eigenvalue sums are minimal for equilateral.
What about individual eigenvalues??? True for λ1D2.

Theorem (Laugesen–Siudeja 2010)

Among triangles, λ2D2 is minimal for equilateral.

Proof. First reduce to isosceles, by domain monotonicity. Then . . .
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Numerical plot for isosceles triangles with aperture α

απ
6

acute obtuseπ
3

π
2

2π
3

λ2D2

λ2L2

λ2A

λ2D2 is minimal (numerically) for equilateral, α = π/3
λ2A and λ2L2 are not minimal for equilateral
(Consistent with general domains (Bucur, Henrot et al):
λ2A and λ2L2 minimal for stadium-like sets, not disk
λ2D2 conjectured minimal for disk)
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Numerical plot for isosceles triangles with aperture α
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Let λ2(α) =second eigenvalue for isosceles with aperture α. Want

λ2(α) > λ2(π/3),
π

4
< α <

π

3
.

How to estimate λ2 from below? Decompose

λ2 = (λ1 + λ2)− λ1

and estimate λ1 + λ2 from below and λ1 from above!
Step 1. λ1A3/I is maximal for equilateral by Pólya, so

λ1(α) < λ1(π/3) + f (α)

for explicit f (α) > 0, f (π/3) = 0.
Step 2. Refine the Method of Unknown Trial Function to show

(λ1 + λ2)(α) > (λ1 + λ2)(π/3) + f (α)

Step 3. Subtract!
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Open problems for triangles

λ1D2 is minimal for equilateral
λ2D2 is minimal for equilateral
λ3D2 is minimal for equilateral
Is λnD2 minimal for equilateral, for each n?

Spectral gap conjecture (Antunes–Freitas):
Is (λ2 − λ1)D2 minimal for equilateral?

Open problems for general domains

Is (λ1 + · · ·+ λn)D2 minimal for disk?
Is λ2D2 minimal for disk? (Bucur, Henrot)
Can assume domain is convex (by expanding to convex hull), and
has constant width.
Spectral gap conjecture (van den Berg):
Is (λ2 − λ1)D2 minimal for degenerate rectangle?

R. S. Laugesen (University of Illinois) Sharp lower bounds on Laplace eigenvalues Carthage, May 27, 2010 13 / 13



Open problems for triangles

λ1D2 is minimal for equilateral
λ2D2 is minimal for equilateral
λ3D2 is minimal for equilateral
Is λnD2 minimal for equilateral, for each n?
Spectral gap conjecture (Antunes–Freitas):
Is (λ2 − λ1)D2 minimal for equilateral?

Open problems for general domains

Is (λ1 + · · ·+ λn)D2 minimal for disk?
Is λ2D2 minimal for disk? (Bucur, Henrot)
Can assume domain is convex (by expanding to convex hull), and
has constant width.
Spectral gap conjecture (van den Berg):
Is (λ2 − λ1)D2 minimal for degenerate rectangle?

R. S. Laugesen (University of Illinois) Sharp lower bounds on Laplace eigenvalues Carthage, May 27, 2010 13 / 13



Open problems for triangles

λ1D2 is minimal for equilateral
λ2D2 is minimal for equilateral
λ3D2 is minimal for equilateral
Is λnD2 minimal for equilateral, for each n?
Spectral gap conjecture (Antunes–Freitas):
Is (λ2 − λ1)D2 minimal for equilateral?

Open problems for general domains

Is (λ1 + · · ·+ λn)D2 minimal for disk?

Is λ2D2 minimal for disk? (Bucur, Henrot)
Can assume domain is convex (by expanding to convex hull), and
has constant width.
Spectral gap conjecture (van den Berg):
Is (λ2 − λ1)D2 minimal for degenerate rectangle?

R. S. Laugesen (University of Illinois) Sharp lower bounds on Laplace eigenvalues Carthage, May 27, 2010 13 / 13



Open problems for triangles

λ1D2 is minimal for equilateral
λ2D2 is minimal for equilateral
λ3D2 is minimal for equilateral
Is λnD2 minimal for equilateral, for each n?
Spectral gap conjecture (Antunes–Freitas):
Is (λ2 − λ1)D2 minimal for equilateral?

Open problems for general domains

Is (λ1 + · · ·+ λn)D2 minimal for disk?
Is λ2D2 minimal for disk? (Bucur, Henrot)
Can assume domain is convex (by expanding to convex hull), and
has constant width.

Spectral gap conjecture (van den Berg):
Is (λ2 − λ1)D2 minimal for degenerate rectangle?

R. S. Laugesen (University of Illinois) Sharp lower bounds on Laplace eigenvalues Carthage, May 27, 2010 13 / 13



Open problems for triangles

λ1D2 is minimal for equilateral
λ2D2 is minimal for equilateral
λ3D2 is minimal for equilateral
Is λnD2 minimal for equilateral, for each n?
Spectral gap conjecture (Antunes–Freitas):
Is (λ2 − λ1)D2 minimal for equilateral?

Open problems for general domains

Is (λ1 + · · ·+ λn)D2 minimal for disk?
Is λ2D2 minimal for disk? (Bucur, Henrot)
Can assume domain is convex (by expanding to convex hull), and
has constant width.
Spectral gap conjecture (van den Berg):
Is (λ2 − λ1)D2 minimal for degenerate rectangle?

R. S. Laugesen (University of Illinois) Sharp lower bounds on Laplace eigenvalues Carthage, May 27, 2010 13 / 13


	Introduction
	Eigenvalue sums
	Second eigenvalue
	Open problems



