Method of the unknown trial function: sharp lower bounds on Laplace eigenvalues

Richard Laugesen

(joint with Bartłomiej Siudeja)

University of Illinois

Queen Dido Conference, March 27, 2010

Dirichlet eigenvalues

$0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \rightarrow \infty$
Faber-Krahn inequality
Among all plane domains,

$\lambda_{1} A$ is minimal for disk

Dirichlet eigenvalues

$0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \rightarrow \infty$
Faber-Krahn inequality
Among all plane domains,

$\lambda_{1} A$ is minimal for disk

Pólya-Szegő inequality

Among all triangles,
$\lambda_{1} A$ is minimal for equilateral triangle

Dirichlet eigenvalues

$0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \rightarrow \infty$
Faber-Krahn inequality
Among all plane domains,

$\lambda_{1} A$ is minimal for disk

Pólya-Szegő inequality

Among all triangles,
$\lambda_{1} A$ is minimal for equilateral triangle
Want inequalities for higher eigenvalues too, for example $\left(\lambda_{1}+\cdots+\lambda_{n}\right)$.

Dirichlet eigenvalues

$0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \rightarrow \infty$
Faber-Krahn inequality
Among all plane domains,

$\lambda_{1} A$ is minimal for disk

Pólya-Szegő inequality

Among all triangles,
$\lambda_{1} A$ is minimal for equilateral triangle
Want inequalities for higher eigenvalues too, for example $\left(\lambda_{1}+\cdots+\lambda_{n}\right)$.

First attempt: $\quad\left(\lambda_{1}+\lambda_{2}\right) A$

Dirichlet eigenvalues

$0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \rightarrow \infty$

Faber-Krahn inequality
Among all plane domains,

$\lambda_{1} A$ is minimal for disk

Pólya-Szegő inequality

Among all triangles,
$\lambda_{1} A$ is minimal for equilateral triangle
Want inequalities for higher eigenvalues too, for example $\left(\lambda_{1}+\cdots+\lambda_{n}\right)$.

First attempt: $\quad\left(\lambda_{1}+\lambda_{2}\right) A$ is not minimal for disk...

Second attempt:
to extend from fundamental tone to higher eigenvalues, weaken the geometric normalization from area to diameter. . .

Second attempt:
to extend from fundamental tone to higher eigenvalues, weaken the geometric normalization from area to diameter. . .

Faber-Krahn for diameter

Among plane domains, $\lambda_{1} D^{2}$ is minimal for disk.

Second attempt:
to extend from fundamental tone to higher eigenvalues, weaken the geometric normalization from area to diameter. . .

Faber-Krahn for diameter

Among plane domains, $\lambda_{1} D^{2}$ is minimal for disk.
Proof. $\lambda_{1} D^{2}=\left(\lambda_{1} A\right)\left(D^{2} / A\right)$, where D^{2} / A is minimal for disk by isodiametric inequality

Second attempt:
to extend from fundamental tone to higher eigenvalues, weaken the geometric normalization from area to diameter. . .

Faber-Krahn for diameter

Among plane domains, $\lambda_{1} D^{2}$ is minimal for disk.
Proof. $\lambda_{1} D^{2}=\left(\lambda_{1} A\right)\left(D^{2} / A\right)$, where D^{2} / A is minimal for disk by isodiametric inequality

Pólya-Szegő for diameter

Among triangles, $\lambda_{1} D^{2}$ is minimal for equilateral.

Second attempt:
to extend from fundamental tone to higher eigenvalues, weaken the geometric normalization from area to diameter...

Faber-Krahn for diameter

Among plane domains, $\lambda_{1} D^{2}$ is minimal for disk.
Proof. $\lambda_{1} D^{2}=\left(\lambda_{1} A\right)\left(D^{2} / A\right)$, where D^{2} / A is minimal for disk by isodiametric inequality

Pólya-Szegő for diameter

Among triangles, $\lambda_{1} D^{2}$ is minimal for equilateral.

Theorem (Laugesen-Siudeja 2010)

Among triangles, the higher eigenvalue sum

$$
\left(\lambda_{1}+\cdots+\lambda_{n}\right) D^{2}
$$

is minimal for equilateral, for each $n=1,2,3, \ldots$

Theorem (Laugesen-Siudeja 2010)

Among triangles, $\left(\lambda_{1}+\cdots+\lambda_{n}\right) D^{2}$ is minimal for equilateral.

Theorem (Laugesen-Siudeja 2010)

Among triangles, $\left(\lambda_{1}+\cdots+\lambda_{n}\right) D^{2}$ is minimal for equilateral.

Comments

- Geometrically sharp, for each fixed n.

Theorem (Laugesen-Siudeja 2010)

Among triangles, $\left(\lambda_{1}+\cdots+\lambda_{n}\right) D^{2}$ is minimal for equilateral.

Comments

- Geometrically sharp, for each fixed n.
- Not asymptotically sharp as $n \rightarrow \infty$, since Weyl asymptotic depends on area (not diameter).

Theorem (Laugesen-Siudeja 2010)

Among triangles, $\left(\lambda_{1}+\cdots+\lambda_{n}\right) D^{2}$ is minimal for equilateral.

Comments

- Geometrically sharp, for each fixed n.
- Not asymptotically sharp as $n \rightarrow \infty$, since Weyl asymptotic depends on area (not diameter).
- Different from Li-Yau, whose lower bound on $\left(\lambda_{1}+\cdots+\lambda_{n}\right) A$ is asymptotically sharp but not geometrically sharp.

Theorem (Laugesen-Siudeja 2010)

Among triangles, $\left(\lambda_{1}+\cdots+\lambda_{n}\right) D^{2}$ is minimal for equilateral.

Comments

- Geometrically sharp, for each fixed n.
- Not asymptotically sharp as $n \rightarrow \infty$, since Weyl asymptotic depends on area (not diameter).
- Different from Li-Yau, whose lower bound on $\left(\lambda_{1}+\cdots+\lambda_{n}\right) A$ is asymptotically sharp but not geometrically sharp.

Proof Step 1 - Reduction to isosceles with aperture angle $<\pi / 3$

- Stretch arbitrary triangle to isosceles with same diameter.

Theorem (Laugesen-Siudeja 2010)

Among triangles, $\left(\lambda_{1}+\cdots+\lambda_{n}\right) D^{2}$ is minimal for equilateral.

Comments

- Geometrically sharp, for each fixed n.
- Not asymptotically sharp as $n \rightarrow \infty$, since Weyl asymptotic depends on area (not diameter).
- Different from Li-Yau, whose lower bound on $\left(\lambda_{1}+\cdots+\lambda_{n}\right) A$ is asymptotically sharp but not geometrically sharp.

Proof Step 1 - Reduction to isosceles with aperture angle $<\pi / 3$

- Stretch arbitrary triangle to isosceles with same diameter.
- Eigenvalues decrease, by domain monotonicity.

Step 2 - Isosceles with aperture in $(\pi / 6, \pi / 3)$

Transplant with linear maps

- Linearly map to isosceles Δ from equilateral and from 30-60-90 right triangles

Step 2 - Isosceles with aperture in $(\pi / 6, \pi / 3)$

Transplant with linear maps

- Linearly map to isosceles Δ from equilateral and from 30-60-90 right triangles
- Transplanted eigenfunctions of isosceles provide trial functions for equilateral and $30-60-90^{\circ}$ triangle

Step 2 - Isosceles with aperture in $(\pi / 6, \pi / 3)$

Step 2 - Isosceles with aperture in $(\pi / 6, \pi / 3)$

Method of the Unknown Trial Function

- Orthonormal eigenfunctions u_{1}, u_{2}, \ldots of isosceles Δ.

Method of the Unknown Trial Function

- Orthonormal eigenfunctions u_{1}, u_{2}, \ldots of isosceles Δ.
- Transplant each u_{j} with linear transformation T_{e}. These trial functions are orthogonal on equilateral $\Delta=T_{e}^{-1}(\Delta)$ and satisfy Dirichlet boundary condition.

Method of the Unknown Trial Function

- Orthonormal eigenfunctions u_{1}, u_{2}, \ldots of isosceles Δ.
- Transplant each u_{j} with linear transformation T_{e}. These trial functions are orthogonal on equilateral $\Delta=T_{e}^{-1}(\Delta)$ and satisfy Dirichlet boundary condition.
- Rayleigh principle implies

$$
\lambda_{1}+\cdots+\left.\lambda_{n}\right|_{\triangle} \leq R\left[u_{1} \circ T_{e}\right]+\cdots+R\left[u_{n} \circ T_{e}\right]
$$

- Left side is known. Right side is unknown.

Method of the Unknown Trial Function

- Orthonormal eigenfunctions u_{1}, u_{2}, \ldots of isosceles Δ.
- Transplant each u_{j} with linear transformation T_{e}. These trial functions are orthogonal on equilateral $\Delta=T_{e}^{-1}(\Delta)$ and satisfy Dirichlet boundary condition.
- Rayleigh principle implies

$$
\lambda_{1}+\cdots+\left.\lambda_{n}\right|_{\triangle} \leq R\left[u_{1} \circ T_{e}\right]+\cdots+R\left[u_{n} \circ T_{e}\right]
$$

- Left side is known. Right side is unknown.

Also, on right side we really want $R\left[u_{1}\right]+\cdots+R\left[u_{n}\right]$.

What does right side tell us?

What does right side tell us?

$$
\begin{aligned}
\lambda_{1}+\cdots+\left.\lambda_{n}\right|_{\triangle} & \leq R\left[u_{1} \circ T_{e}\right]+\cdots+R\left[u_{n} \circ T_{e}\right] \\
& \leq X+\left(\frac{h}{\sqrt{3} / 2}\right)^{2} Y
\end{aligned}
$$

What does right side tell us?

$$
\begin{aligned}
\lambda_{1}+\cdots+\left.\lambda_{n}\right|_{\triangle} & \leq R\left[u_{1} \circ T_{e}\right]+\cdots+R\left[u_{n} \circ T_{e}\right] \\
& \leq X+\left(\frac{h}{\sqrt{3} / 2}\right)^{2} Y
\end{aligned}
$$

where

$$
X=\sum_{j=1}^{n} \int_{\Delta} u_{j, x}^{2} d A \quad Y=\sum_{j=1}^{n} \int_{\Delta} u_{j, y}^{2} d A
$$

What does right side tell us?

$$
\begin{aligned}
\lambda_{1}+\cdots+\left.\lambda_{n}\right|_{\triangle} & \leq R\left[u_{1} \circ T_{e}\right]+\cdots+R\left[u_{n} \circ T_{e}\right] \\
& \leq X+\left(\frac{h}{\sqrt{3} / 2}\right)^{2} Y
\end{aligned}
$$

where

$$
X=\sum_{j=1}^{n} \int_{\Delta} u_{j, x}^{2} d A \quad Y=\sum_{j=1}^{n} \int_{\Delta} u_{j, y}^{2} d A
$$

Transplantation to right triangles similarly gives

$$
\lambda_{1}+\cdots+\lambda_{n} \left\lvert\, \leq \frac{13}{12} X+\frac{4 h^{2}}{12} Y\right.
$$

What does right side tell us?

$$
\begin{aligned}
\lambda_{1}+\cdots+\left.\lambda_{n}\right|_{\triangle} & \leq R\left[u_{1} \circ T_{e}\right]+\cdots+R\left[u_{n} \circ T_{e}\right] \\
& \leq X+\left(\frac{h}{\sqrt{3} / 2}\right)^{2} Y
\end{aligned}
$$

where

$$
X=\sum_{j=1}^{n} \int_{\Delta} u_{j, x}^{2} d A \quad Y=\sum_{j=1}^{n} \int_{\Delta} u_{j, y}^{2} d A
$$

Transplantation to right triangles similarly gives

$$
\lambda_{1}+\cdots+\lambda_{n} \left\lvert\, \leq \frac{13}{12} X+\frac{4 h^{2}}{12} Y\right.
$$

We want

$$
\lambda_{1}+\cdots+\left.\lambda_{n}\right|_{\triangle} \leq(X+Y) D^{2}
$$

where $D^{2}=h^{2}+\left(\frac{1}{2}\right)^{2}$.

Define ratio

$$
\gamma_{n} \xlongequal{\text { def }} \frac{\left.\left(\lambda_{1}+\cdots+\lambda_{n}\right)\right|_{\Delta}}{\left.\left(\lambda_{1}+\cdots+\lambda_{n}\right)\right|_{\triangle}}
$$

Then previous slide says

$$
\begin{aligned}
\lambda_{1}+\cdots+\left.\lambda_{n}\right|_{\triangle} & \leq X+\frac{4 h^{2}}{3} Y \\
\lambda_{1}+\cdots+\left.\lambda_{n}\right|_{\triangle} & \leq\left(\frac{13}{12} X+\frac{4 h^{2}}{12} Y\right) / \gamma_{n}
\end{aligned}
$$

We need at least one of right sides to be $<(X+Y)\left(h^{2}+\left(\frac{1}{2}\right)^{2}\right)$.

Thus we need

$$
\frac{3}{4} \geq \frac{Y}{X+Y} \quad \text { or } \quad \frac{Y}{X+Y} \geq \frac{13-3 \gamma_{n}\left(1+4 h^{2}\right)}{13-4 h^{2}}
$$

Thus we need

$$
\frac{3}{4} \geq \frac{Y}{X+Y} \quad \text { or } \quad \frac{Y}{X+Y} \geq \frac{13-3 \gamma_{n}\left(1+4 h^{2}\right)}{13-4 h^{2}}
$$

Bad News: we cannot evaluate this fraction $Y /(X+Y)$ of the Rayleigh quotient, on the isosceles triangle.

Thus we need

$$
\frac{3}{4} \geq \frac{Y}{X+Y} \quad \text { or } \quad \frac{Y}{X+Y} \geq \frac{13-3 \gamma_{n}\left(1+4 h^{2}\right)}{13-4 h^{2}}
$$

Bad News: we cannot evaluate this fraction $Y /(X+Y)$ of the Rayleigh quotient, on the isosceles triangle.
Good News: suffices to prove

$$
\frac{3}{4} \geq \max _{h} \frac{13-3 \gamma_{n}\left(1+4 h^{2}\right)}{13-4 h^{2}}
$$

Thus we need

$$
\frac{3}{4} \geq \frac{Y}{X+Y} \quad \text { or } \quad \frac{Y}{X+Y} \geq \frac{13-3 \gamma_{n}\left(1+4 h^{2}\right)}{13-4 h^{2}}
$$

Bad News: we cannot evaluate this fraction $Y /(X+Y)$ of the Rayleigh quotient, on the isosceles triangle.
Good News: suffices to prove

$$
\frac{3}{4} \geq \max _{h} \frac{13-3 \gamma_{n}\left(1+4 h^{2}\right)}{13-4 h^{2}}
$$

Equivalently, prove

$$
\gamma_{n}=\frac{\lambda_{1}+\cdots+\lambda_{n} \mid \Delta}{\lambda_{1}+\cdots+\left.\lambda_{n}\right|_{\Delta}} \geq \frac{11}{24}
$$

Thus we need

$$
\frac{3}{4} \geq \frac{Y}{X+Y} \quad \text { or } \quad \frac{Y}{X+Y} \geq \frac{13-3 \gamma_{n}\left(1+4 h^{2}\right)}{13-4 h^{2}}
$$

Bad News: we cannot evaluate this fraction $Y /(X+Y)$ of the Rayleigh quotient, on the isosceles triangle.
Good News: suffices to prove

$$
\frac{3}{4} \geq \max _{h} \frac{13-3 \gamma_{n}\left(1+4 h^{2}\right)}{13-4 h^{2}}
$$

Equivalently, prove

$$
\gamma_{n}=\frac{\lambda_{1}+\cdots+\lambda_{n} \mid \Delta}{\lambda_{1}+\cdots+\left.\lambda_{n}\right|_{\Delta}} \geq \frac{11}{24}
$$

More good news:
$\gamma_{n} \rightarrow 12 / 24$ as $n \rightarrow \infty$ by Weyl, since area $(\Delta)=2$ area (Δ).

Thus we need

$$
\frac{3}{4} \geq \frac{Y}{X+Y} \quad \text { or } \quad \frac{Y}{X+Y} \geq \frac{13-3 \gamma_{n}\left(1+4 h^{2}\right)}{13-4 h^{2}}
$$

Bad News: we cannot evaluate this fraction $Y /(X+Y)$ of the Rayleigh quotient, on the isosceles triangle.
Good News: suffices to prove

$$
\frac{3}{4} \geq \max _{h} \frac{13-3 \gamma_{n}\left(1+4 h^{2}\right)}{13-4 h^{2}}
$$

Equivalently, prove

$$
\gamma_{n}=\frac{\lambda_{1}+\cdots+\left.\lambda_{n}\right|_{\Delta}}{\lambda_{1}+\cdots+\left.\lambda_{n}\right|_{\triangle}} \geq \frac{11}{24}
$$

More good news:
$\gamma_{n} \rightarrow 12 / 24$ as $n \rightarrow \infty$ by Weyl, since area $(\Delta)=2$ area (Δ).
Make rigorous using counting function, explicit formulas.

Summary - Method of the Unknown Trial Function

- "interpolates" between two "endpoint" domains whose eigenvalues we know
- applies to linear transformations of arbitrary domains, not just triangles
- could be used on nonlinear transformations too?
- applies also to Neumann eigenvalues

Summary - Method of the Unknown Trial Function

- "interpolates" between two "endpoint" domains whose eigenvalues we know
- applies to linear transformations of arbitrary domains, not just triangles
- could be used on nonlinear transformations too?
- applies also to Neumann eigenvalues

Second eigenvalue

We have shown eigenvalue sums are minimal for equilateral. What about individual eigenvalues???

Summary - Method of the Unknown Trial Function

- "interpolates" between two "endpoint" domains whose eigenvalues we know
- applies to linear transformations of arbitrary domains, not just triangles
- could be used on nonlinear transformations too?
- applies also to Neumann eigenvalues

Second eigenvalue

We have shown eigenvalue sums are minimal for equilateral. What about individual eigenvalues??? True for $\lambda_{1} D^{2}$.

Theorem (Laugesen-Siudeja 2010)

Among triangles, $\lambda_{2} D^{2}$ is minimal for equilateral.

Summary - Method of the Unknown Trial Function

- "interpolates" between two "endpoint" domains whose eigenvalues we know
- applies to linear transformations of arbitrary domains, not just triangles
- could be used on nonlinear transformations too?
- applies also to Neumann eigenvalues

Second eigenvalue

We have shown eigenvalue sums are minimal for equilateral. What about individual eigenvalues??? True for $\lambda_{1} D^{2}$.

Theorem (Laugesen-Siudeja 2010)

Among triangles, $\lambda_{2} D^{2}$ is minimal for equilateral.
Proof. First reduce to isosceles, by domain monotonicity. Then ...

Numerical plot for isosceles triangles with aperture α

Numerical plot for isosceles triangles with aperture α

$\lambda_{2} D^{2}$ is minimal (numerically) for equilateral, $\alpha=\pi / 3$ $\lambda_{2} A$ and $\lambda_{2} L^{2}$ are not minimal for equilateral

Numerical plot for isosceles triangles with aperture α

$\lambda_{2} D^{2}$ is minimal (numerically) for equilateral, $\alpha=\pi / 3$
$\lambda_{2} A$ and $\lambda_{2} L^{2}$ are not minimal for equilateral
(Consistent with general domains (Bucur, Henrot et al): $\lambda_{2} A$ and $\lambda_{2} L^{2}$ minimal for stadium-like sets, not disk $\lambda_{2} D^{2}$ conjectured minimal for disk)

Let $\lambda_{2}(\alpha)=$ second eigenvalue for isosceles with aperture α. Want

$$
\lambda_{2}(\alpha)>\lambda_{2}(\pi / 3), \quad \frac{\pi}{4}<\alpha<\frac{\pi}{3}
$$

Let $\lambda_{2}(\alpha)=$ second eigenvalue for isosceles with aperture α. Want

$$
\lambda_{2}(\alpha)>\lambda_{2}(\pi / 3), \quad \frac{\pi}{4}<\alpha<\frac{\pi}{3}
$$

How to estimate λ_{2} from below?

Let $\lambda_{2}(\alpha)=$ second eigenvalue for isosceles with aperture α. Want

$$
\lambda_{2}(\alpha)>\lambda_{2}(\pi / 3), \quad \frac{\pi}{4}<\alpha<\frac{\pi}{3} .
$$

How to estimate λ_{2} from below? Decompose

$$
\lambda_{2}=\left(\lambda_{1}+\lambda_{2}\right)-\lambda_{1}
$$

and estimate $\lambda_{1}+\lambda_{2}$ from below and λ_{1} from above!

Let $\lambda_{2}(\alpha)=$ second eigenvalue for isosceles with aperture α. Want

$$
\lambda_{2}(\alpha)>\lambda_{2}(\pi / 3), \quad \frac{\pi}{4}<\alpha<\frac{\pi}{3} .
$$

How to estimate λ_{2} from below? Decompose

$$
\lambda_{2}=\left(\lambda_{1}+\lambda_{2}\right)-\lambda_{1}
$$

and estimate $\lambda_{1}+\lambda_{2}$ from below and λ_{1} from above! Step 1. $\lambda_{1} A^{3} / l$ is maximal for equilateral by Pólya, so

$$
\lambda_{1}(\alpha)<\lambda_{1}(\pi / 3)+f(\alpha)
$$

for explicit $f(\alpha)>0, f(\pi / 3)=0$.

Let $\lambda_{2}(\alpha)=$ second eigenvalue for isosceles with aperture α. Want

$$
\lambda_{2}(\alpha)>\lambda_{2}(\pi / 3), \quad \frac{\pi}{4}<\alpha<\frac{\pi}{3} .
$$

How to estimate λ_{2} from below? Decompose

$$
\lambda_{2}=\left(\lambda_{1}+\lambda_{2}\right)-\lambda_{1}
$$

and estimate $\lambda_{1}+\lambda_{2}$ from below and λ_{1} from above! Step 1. $\lambda_{1} A^{3} / l$ is maximal for equilateral by Pólya, so

$$
\lambda_{1}(\alpha)<\lambda_{1}(\pi / 3)+f(\alpha)
$$

for explicit $f(\alpha)>0, f(\pi / 3)=0$.
Step 2. Refine the Method of Unknown Trial Function to show

$$
\left(\lambda_{1}+\lambda_{2}\right)(\alpha)>\left(\lambda_{1}+\lambda_{2}\right)(\pi / 3)+f(\alpha)
$$

Let $\lambda_{2}(\alpha)=$ second eigenvalue for isosceles with aperture α. Want

$$
\lambda_{2}(\alpha)>\lambda_{2}(\pi / 3), \quad \frac{\pi}{4}<\alpha<\frac{\pi}{3} .
$$

How to estimate λ_{2} from below? Decompose

$$
\lambda_{2}=\left(\lambda_{1}+\lambda_{2}\right)-\lambda_{1}
$$

and estimate $\lambda_{1}+\lambda_{2}$ from below and λ_{1} from above! Step 1. $\lambda_{1} A^{3} / l$ is maximal for equilateral by Pólya, so

$$
\lambda_{1}(\alpha)<\lambda_{1}(\pi / 3)+f(\alpha)
$$

for explicit $f(\alpha)>0, f(\pi / 3)=0$.
Step 2. Refine the Method of Unknown Trial Function to show

$$
\left(\lambda_{1}+\lambda_{2}\right)(\alpha)>\left(\lambda_{1}+\lambda_{2}\right)(\pi / 3)+f(\alpha)
$$

Step 3. Subtract!

Open problems for triangles

- $\lambda_{1} D^{2}$ is minimal for equilateral $\lambda_{2} D^{2}$ is minimal for equilateral $\lambda_{3} D^{2}$ is minimal for equilateral Is $\lambda_{n} D^{2}$ minimal for equilateral, for each n ?

Open problems for triangles

- $\lambda_{1} D^{2}$ is minimal for equilateral $\lambda_{2} D^{2}$ is minimal for equilateral $\lambda_{3} D^{2}$ is minimal for equilateral Is $\lambda_{n} D^{2}$ minimal for equilateral, for each n ?
- Spectral gap conjecture (Antunes-Freitas): Is $\left(\lambda_{2}-\lambda_{1}\right) D^{2}$ minimal for equilateral?

Open problems for triangles

- $\lambda_{1} D^{2}$ is minimal for equilateral $\lambda_{2} D^{2}$ is minimal for equilateral $\lambda_{3} D^{2}$ is minimal for equilateral Is $\lambda_{n} D^{2}$ minimal for equilateral, for each n ?
- Spectral gap conjecture (Antunes-Freitas): Is $\left(\lambda_{2}-\lambda_{1}\right) D^{2}$ minimal for equilateral?

Open problems for general domains

- Is $\left(\lambda_{1}+\cdots+\lambda_{n}\right) D^{2}$ minimal for disk?

Open problems for triangles

- $\lambda_{1} D^{2}$ is minimal for equilateral $\lambda_{2} D^{2}$ is minimal for equilateral $\lambda_{3} D^{2}$ is minimal for equilateral Is $\lambda_{n} D^{2}$ minimal for equilateral, for each n ?
- Spectral gap conjecture (Antunes-Freitas): Is $\left(\lambda_{2}-\lambda_{1}\right) D^{2}$ minimal for equilateral?

Open problems for general domains

- Is $\left(\lambda_{1}+\cdots+\lambda_{n}\right) D^{2}$ minimal for disk?
- Is $\lambda_{2} D^{2}$ minimal for disk? (Bucur, Henrot)

Can assume domain is convex (by expanding to convex hull), and has constant width.

Open problems for triangles

- $\lambda_{1} D^{2}$ is minimal for equilateral
$\lambda_{2} D^{2}$ is minimal for equilateral
$\lambda_{3} D^{2}$ is minimal for equilateral Is $\lambda_{n} D^{2}$ minimal for equilateral, for each n ?
- Spectral gap conjecture (Antunes-Freitas): Is $\left(\lambda_{2}-\lambda_{1}\right) D^{2}$ minimal for equilateral?

Open problems for general domains

- Is $\left(\lambda_{1}+\cdots+\lambda_{n}\right) D^{2}$ minimal for disk?
- Is $\lambda_{2} D^{2}$ minimal for disk? (Bucur, Henrot)

Can assume domain is convex (by expanding to convex hull), and has constant width.

- Spectral gap conjecture (van den Berg): Is $\left(\lambda_{2}-\lambda_{1}\right) D^{2}$ minimal for degenerate rectangle?

