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Schwarz’s Lemma and variations



Classical Schwarz Lemma

We begin with the classical form of Schwarz’s Lemma. Let
D={zeC:|z| <1} andlet f: D — D be analytic with
f(0) = 0. Then |f(2)| < |z| and |f(0)| < 1. Equality in either
case implies f(z) = e’z for some 6 € R.



Classical Schwarz Lemma

We begin with the classical form of Schwarz’s Lemma. Let
D={zeC:|z| <1} andlet f: D — D be analytic with
f(0) = 0. Then |f(z)| < |z| and |f'(0)| < 1. Equality in either
case implies f(z) = e’z for some 6 € R.

We can rephrase this more geometrically by defining

Rad(r) = sup |f(z) — £(0)|.

|2[=r

Then Schwarz’s Lemma says Rad(r) < r, and, in fact, its
classical proof implies

r— 1? Rad(r)

is an increasing function for 0 < r < 1.



Variations on Schwarz’s Lemma

In 2008, Burckel, Marshall, Minda, Poggi-Corradini, and
Ransford proved similar versions for n-diameter, logarithmic
capacity, and area. They asked whether such a theorem holds

for the first Dirichlet eigenvalue .



Variations on Schwarz’s Lemma

In 2008, Burckel, Marshall, Minda, Poggi-Corradini, and
Ransford proved similar versions for n-diameter, logarithmic
capacity, and area. They asked whether such a theorem holds
for the first Dirichlet eigenvalue .

Theorem
(van den Berg, Carroll, —) Let f : D — C be conformal. Then the
function (D)) 1
r
o =V 2
r— ®,(r) D) jgr A(f(rD)) (1)

is strictly decreasing for0 < r < 1, unless f is linear (in which
case this function is constant).
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Isoperimetric inequalities



A key tool we use is the following isoperimetric inequality.

Theorem

Let D c C be a bounded domain with Lipschitz boundary, and
let ¢ be the first Dirichlet eigenfunction. Place the conformal
metric ds® = |V ¢|?|dz|? on D, and let

A= / VoPldz2, L= / V6|l
D oD

be the area and perimeter (respectively) of D with respect to
this conformal metric. Then

L2 > 47 A, (2)

with equality if and only if D is a round disk.



The metric |V ¢|?|dz|? is a singular metric on D, with
singularities at the critical points of the eigenfunction ¢.
However, there are only finitely many of these singular points,
all of which lie in the interior of D, and the metric vanishes to
first order there.



The case of equality: the Bessel disk

On the unit disk D, let ¢o(r) = Jo(Jor) be the first eigenfunction.
We call the conformal metric

ds? = |Vol?|dz|* = 57 (jor)|oz|?

the Bessel metric on the disk. This metric has an isolated
singularity at the origin. The curvature is everywhere positive,
and goes to +oo as r — 0%, and (D, |V¢g|?|dz|?) has total
curvature 4.



This is a graph of the conformal factor p(r) = joJi (Jor):
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This is a graph of the Gauss curvature, K = —p~2Alog(p), of
the Bessel disk:
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This is a graph of the Gauss-Bonnet integrand,
KdA = —Alog(p), of the Bessel disk:




There’s a fairly large literature of isoperimetric inequalities on
surfaces. Notable recent results include a pair of theorems due
(separately) to Topping and Morgan-Hutchings-Howard. In
each of their inequalities, they note that one gets equality for a
rotationally symmetric on a disk where the curvature function is
monotone.

We note that the Bessel disk achieves equality in their
inequalities, is rotationally symmetric, but its curvature is not
monotone.
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Proof



We'll briefly sketch the proof of (2) and how one proves (1)
using (2).

Payne and Rayner proved an equivalent form of this
isoperimetric inequality for the first eigenfunction:

( /D ¢>dA>2 > 47” /D $2dA. 3)

Their proof relies on the coarea formula and the
Cauchy-Schwarz inequality, and is fairly similar to the classical
proof of the Faber-Krahn inequality.



It is straightforward to see that (2) and (3) are equivalent. If n is
the outward unit normal of D, then

/ [Volds = — —ds
oD

Also, because ¢ is minimizes the Rayleigh quotient,

/D|V¢\2dA:)\/D¢>2dA.



Now we’ll prove (1); recall
r2
®a(r) = S A(f(rD)).
lo
To show that ¢, is decreasing, we want to show that

0> 3% _ 12 2r\(f(rD)) + rzgr/\(f(r]D))) :

— ar J§
or, equivalently,

%)\(f(r]D))) < —jr(A(f(rD)))'



A classical variation formula of Hadamard tells us

d 2 2
D)) = —r/O Vipr|*db), ()

where ¢, is the eigenfunction of D, = f(rD) and ¢, = ¢, o f. We
can normalize ¢, so that [, ¢2dA = 1.



By (2),

2T 2
(r /O |wr||dz|>

A\

2
( / |v¢,|ds)
oDy

47r/ Vi [?dA
Dr

47r/ Vi 2] dz .
rD



Now, using the normalization of ¢y,

2 2 2
E\(f(p)) = 2 / Vebr[2aA =2 / Vi P dz[?
r r Dr rD

r

27 . 2
. ( / w,<re'9)|de>

27 ) d
i0y|2 _
r/o |V (re™)|<do = dr)\(f(r}D))).
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Thanks!
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