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Abstract

In this note we prove a version of the classical Schwarz lemma for the first eigenvalue of
the Laplacian with Dirichlet boundary data. A key ingredient in our proof is an isoperimetric
inequality for the first eigenfunction, due to Payne and Rayner, which we reinterpret as an
isoperimetric inequality for a (singular) conformal metric on a bounded domain in the plane.

1 Introduction

Let D = {z : |z| < 1} ⊂ C be the unit disk in the complex plane, and let f : D → D be analytic
with f(0) = 0. Then the classical Schwarz lemma states that |f(z)| ≤ |z| and |f ′(0)| ≤ 1, and
that equality in either case implies f(z) = eiθz for some θ ∈ R. One can reinterpret this result
more geometrically by defining, for 0 < r < 1,

Rad(r) = sup
|z|=r

|f(z)− f(0)|,

so that the Schwarz lemma states Rad(r) ≤ rRad(1) for every analytic f : D → C. In fact, the
classical proof of the Schwarz lemma implies

ΦRad(r) =
Rad(r)
r

is a strictly increasing function of r, unless f is linear (in which case ΦRad is constant).
Burckel, Marshall, Minda, Poggi-Corradini, and Ransford [1] recently proved versions of the

Schwarz Lemma for diameter, logarithmic capacity, and area. They asked whether similar in-
equalities hold for other quantities, such as the first eigenvalue λ of the Laplacian with Dirichlet
boundary data.

Theorem 1. Let f be a conformal mapping of the unit disk D. The function

Φλ(r) =
λ
(
f(rD)

)
λ(rD)

=
1
j2
0

r2λ
(
f(rD)

)
, 0 < r < 1, (1)

is strictly decreasing, unless f is linear (in which case Φλ is constant).
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Taking a limit of the right hand side of (1) as r → 0+, we recover the estimate in Section 5.8
of [6]. Using monotonicity of the right hand side of (1), we also see that the limit as r → 1− of
the right hand side of (1) also exists, thought it might be zero.

A slight modification of the proof of Theorem 1 yields the following corollary.

Corollary 2. Let f be an analytic function in the unit disk. For 0 < r < 1 let Σr be the Riemann
surface associated to f : rD→ C. Then the function

r 7→ 1
j2
0

r2λ(Σr)

is strictly decreasing, unless f is linear (in which case this function is constant).

Remark 1. After presenting these results at the Queen Dido conference on isoperimetry, we
learned that Laugesen and Morpurgo [4] proved a series of very general results which includes the
inequality of Theorem 1. (See, in particular, Theorem 7, on page 80 of their paper.) Our proof
is quite different from that in [4] and may be of interest in its own right.

Remark 2. One key point of [1] is that their estimates involve the area (for instance) of the
image of f(rD), rather than the area with multiplicity. We have left the corresponding question
for the first Dirichlet eigenvalue of the Laplacian open. In this case, the first variation formula
for the first eigenvalue of the image domain f(rD) is more complicated than the variation formula
we have below, and when pulled back to rD will involve an integral over a proper subset of the
boundary circle.

A key step in the proof of this eigenvalue estimate is to rewrite a result of Payne and Rayner
[7] as an isoperimetric-type inequality for the first eigenfunction.

Theorem A. Let D be a bounded planar region with Lipschitz boundary ∂D, and let φ be the
first eigenfunction of the Laplacian with Dirichlet boundary conditions. Then(∫

∂D

|∇φ|
)2

≥ 4π
∫
D

|∇φ|2, (2)

with equality if and only if D is a disk.

The inequality (2) is in fact the isoperimetric inequality L2 ≥ 4πA for the domain D, where
one measures length and area with respect to the (singular) conformal metric ds2 = |∇φ|2|dw|2.
We discuss some properties of this metric below, in Section 2, and the equality in the case of the
disk in Section 3.

The rest of this paper proceeds as follows. We prove Theorem 1 in Section 2 by writing
out the first variation of the eigenvalue under a domain perturbation and reducing our problem
to the isoperimetric inequality in Theorem A. We examine the equality case of the isoperimetic
inequality, that of a disk, in Section 3.

Acknowledgements: We first learned about these variations on Schwarz’s Lemma from Pietro
Poggi-Corradini during a Summer School in Conformal Geometry, Potential Theory, and Appli-
cations at NUI Maynooth in June 2009. We would like to thank Poggi-Corradini for interesting
discussions on the subject and the organizers of the conference for providing a stimulating venue
for these discussions. We would also like to thank Michiel van den Berg for many enlightening
conversations, and telling us of [7]. Finally, we would like to thank Rick Laugesen for pointing
out [4].
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2 A Schwarz Lemma for the first eigenvalue

Let f be an analytic function in the unit disk D. Let Dr = f(rD) for 0 < r < 1, and let
λ(r) = λ(Dr). The first Dirichlet eigenvalue for a disk is known to be λ(rD) = j2

0/r
2 where j0 is

the first positive zero of the Bessel function J0 of index zero. We then have

Φ(r) =
λ
(
f(rD)

)
λ(rD)

=
1
j2
0

r2λ(r). (3)

Taking a derivative, we see that

dΦ
dr

=
1
j2
0

[
2rλ(r) + r2 dλ

dr

]
, (4)

so Φ is a decreasing function of r precisely if

2
r
λ(r) ≤ −dλ

dr
. (5)

A classical theorem of Hadamard [3] computes the first variation of the eigenvalue as follows
(see also [8, 2, 6]).

Let Ω0 be a domain. Let ζ(t, x) be a flow on Ω0 associated with the variation field χ = χ(t, x)
in the time interval (−t0, t0), in that,

∂ζ

∂t
(t, x) = χ

(
ζ(t, x)

)
(6)

ζ(0, p) = p, p ∈ Ω0. (7)

Let Ωt be the domain ζ(t,Ω0), let λ(t) be the first Dirichlet eigenvalue for the Laplacian in Ωt, and
let φ(t, x), x ∈ Ωt, be the associated eigenfunction normalised so that

∫
Ωt
φ2 = 1. Let η denote

the outward normal and dσ denote arc-length measure for ∂Ωt. For the reader’s convenience, we
include a proof of the following formula for the time derivative of the eigenvalue, which draws
heavily on the treatment in [6]. We take all boundaries and variation fields to be C∞, even though
the variation formula holds with less regularity. In the calculation below we denote differentiation
with respect to the parameter t with a dot.

Lemma 3.

λ̇(0) = −
∫
∂Ω0

〈χ, η〉
(
∂φ

∂η

)2

dσ. (8)

Remark 3. Because the first eigenvalue is simple, the function λ(t) is differentiable. The higher
eigenvalues λk(t), for k > 1, may not be differentiable functions of t, but both one-sided derivatives
will exist. See the discussion in Sections 2 and 3 of [2] for more information.

Proof. First we compute the time derivative of the boundary terms of the normalized first eigen-
function φ. Taking a derivative of the condition

φ
(
t, ζ(t, p)

)
= 0, p ∈ ∂Ω0

with respect to t and using (6), we obtain

φ̇
(
t, ζ(t, p)

)
+
〈
∇φ
(
t, ζ(t, p)

)
, χ(p)

〉
= 0.

Here and later, the gradient refers only to the spatial derivative. Set t = 0 and use the fact that
φ is constant along ∂Ωt to obtain

φ̇(0, p) = −
〈
∇φ(0, p), χ(p)

〉
= −

〈 ∂φ

∂η

∣∣∣∣
(0,p)

η(p), χ(p)
〉
, p ∈ ∂Ω0. (9)
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Next we take the derivative of the eigenfunction equation

∆φ
(
t, ζ(t, p)

)
+ λ(t)φ

(
t, ζ(t, p)

)
= 0 (10)

with respect to t and evaluate at t = 0. This leads to

0 = ∆
[
φ̇+ 〈∇φ, χ〉

]
+ λ(t)

[
φ̇+ 〈∇φ, χ〉

]
+ λ̇(t)φ

= ∆φ̇+ 〈∇∆φ, χ〉+ λ(t)φ̇+ λ(t)〈∇φ, χ〉+ λ̇(t)φ
= ∆φ̇+ λ(t)φt + λ̇(t)φ.

Setting t = 0 and rearranging yields

∆ φ̇
∣∣∣
t=0

+ λ(0) φ̇
∣∣∣
t=0

= −λ̇(0)φ
∣∣
t=0

in Ω0. (11)

We multiply (10), with t = 0, by φ̇
∣∣
t=0

and multiply (11) by φ, subtract and obtain

λ̇(0)φ2(0, p) = φ̇(0, p)∆φ(0, p)− φ(0, p)∆φ̇(0, p), p ∈ Ω0. (12)

Integrate (12) over Ω0 and use the fact that
∫

Ωt
φ2 = 1 to obtain

λ̇(0) =
∫

Ω0

φ̇∆φ− φ∆φ̇

=
∫
∂Ω0

φ̇
∂φ

∂η
−
∫

Ω0

〈
∇φ,∇φ̇

〉
+
∫

Ω0

〈
∇φ,∇φ̇

〉
−
∫
∂Ω0

φ
∂φ̇

∂η

=
∫
∂Ω0

φ̇
∂φ

∂η

= −
∫
∂Ω0

∂φ

∂η
〈∇φ, χ〉

= −
∫
∂Ω0

〈χ, η〉
(
∂φ

∂η

)2

,

which is equation (14) as claimed. In the second equality above we integrated by parts, in the
next to last we used (9), and at the last step we used the fact that φ is constant on ∂Ω0 (and
hence ∇φ = ∂φ

∂η η there).

We adapt this formula to our particular case.

Lemma 4. Let f be a conformal mapping of the unit disk D with f(0) = 0. Let λ(r) be the
eigenvalue of the domain Dr = f(rD) with eigenfunction φr in L2(Dr). Let

ψr(z) = φr
(
f(z)

)
, z ∈ rD. (13)

Then
dλ

dr
= −r

∫ 2π

0

|(∇ψr)(reiθ)|2 dθ. (14)

Remark 4. The function ψ satisfies the equation

∆ψ + λ|f ′|2ψ = 0,

and so ψ is the first Dirichlet eigenfunction of the Laplacian on the conformal disk (D, |f ′|2|dz|2).
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Proof. For a fixed r in (0, 1), we set

ζ(t, p) = f
(
(1 + t/r)f−1(p)

)
, p ∈ Dr. (15)

Then, ζ(0, p) = p, ζ(0, Dr) = Ω0 = Dr, ζ(t,Dr) = Ωt = Dr+t, and

∂ζ

∂t
(t, p) = f ′

(
(1 + t/r)f−1(p)

)1
r
f−1(p).

It follows that (6) holds with

χ(ζ) =
1

r + t
f−1(ζ)f ′

(
f−1(ζ)

)
. (16)

The unit normal vector to the boundary of Dr at ζ is

η(ζ) =
f−1(ζ)
r

f ′
(
f−1(ζ)

)∣∣f ′(f−1(ζ)
)∣∣ . (17)

Thus, (16) with t = 0 and (17) show that χ(ζ) =
∣∣f ′(f−1(ζ)

)∣∣η(ζ), ζ ∈ ∂Dr, so that

〈χ, η〉 =
∣∣f ′(f−1(ζ)

)∣∣, ζ ∈ ∂Dr.

The gradient of the function ψr given by (13) is |∇ψr(z)| = |∇φr
(
f(z)

)
| |f ′(z)|. This, and

Lemma 3, lead to

λ̇(r) = −
∫
∂Dr

∣∣f ′(f−1(ζ)
)∣∣ |∇φr(ζ)|2 |dζ|

= −
∫
C(0,r)

|f ′(z)|
(
|∇ψr(z)|
|f ′(z)|

)2

|f ′(z)| |dz|

= −
∫
C(0,r)

|∇ψr(z)|2 |dz|,

where C(0, r) denotes the circle centre 0 and radius r, which is (14).

Next we verify Theorem A. Payne and Rayner write the inequality in the form(∫
D

φ

)2

≥ 4π
λ

∫
D

φ2 (18)

with equality if and only if D is a disk. If we denote by η the unit outward normal to the boundary
of D, ∫

∂D

|∇φ| =
∫
∂D

(
−∂φ
∂η

)
=
∫
D

(−∆φ) = λ

∫
D

φ,

where the first equality comes from the fact that φ is constant on the boundary of D, the second
from Green’s theorem, and the third from the eigenfunction equation ∆φ + λφ = 0. Since φ
minimises the Rayleigh quotient, ∫

D

|∇φ|2 = λ

∫
D

φ2.

Hence, (2) and (18) are equivalent.

Proof of Theorem 1. By Theorem A,(∫
C(0,r)

∣∣∇ψr(z)∣∣ |dz|)2

=

(∫
∂Dr)

|∇φr|

)2

≥ 4π
∫
Dr

|∇φr|2 = 4π
∫
rD
|∇ψr|2.
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Hence, since ‖φr‖L2(Dr) = 1,

2
r
λ(r) =

2
r

∫
Dr

|∇φr|2 =
2
r

∫
rD
|∇ψr|2

≤ r

2π

(∫ 2π

0

|∇ψr(reiθ)| dθ
)2

≤ r
∫ 2π

0

|∇ψr(reiθ)|2 dθ

= −λ′(r),

by (14). This proves (5) and hence Theorem 1.

Remark 5. The metric |∇φ|2|dw|2 on Dr = f(rD) is a singular metric, with singularities at the
critical points of the eigenfunction φ. However, φ solves a second order, linear, elliptic equation
on a bounded domain with C∞ boundary, so it only has finitely many critical points, none of
which are degenerate. We conclude that the metric |∇φ|2|dw|2 in Dr, or, equivalently, |∇ψ|2|dz|2
in rD, has only finitely many singular points, where the metric vanishes only to zeroth order.

Remark 6. The isoperimetric inequality L2 ≥ 4πA, with L =
∫
∂D
|∇φ||dw| and A =

∫
D
|∇φ|2|dw|2,

seems quite general. Using the Riemann mapping theorem, it holds for any simply connected do-
main D ⊂ C. We also find it remarkable that the constant in this isoperimetric inequality is the
same one as in the classical isoperimetric inequality.

Proof of Corollary 2. The function f : rD→ Σr is a conformal map away from its critical points,
and so the first variation formula (14) holds so long as f does not have a critical point of length
r. For any r0 ∈ (0, 1) there are only finitely many values r̂ < r0 such that f has a critical
point of length equal to r̂, and the variation formula (14) is valid away from these values r̂.
Thus, we can integrate the inequality (5) to see that Φ(r) = (r2/j2

0)λ(f(rD)) is decreasing for
0 < r < r0. Moreover, if there exist r1 < r2 such that Φ(r1) = Φ(r2) then f is linear on the
annulus r1 < |z| < r2; this combined with the fact that f is analytic on the disk D implies f is
linear on the whole disk.

3 The Bessel disk: the equality case of the isoperimetric
inequality

In any given inequality, the case of equality is always important, and often sheds light on other
problems. The equality case of (1) occurs when f is linear, in which case the image domains
f(rD) are disks for all r ∈ (0, 1). In this case, the eigenfunctions φ and ψ agree up to scaling
factors, and we write φ(z) = J0(j0|z|), where J0 is the Bessel function with index zero and j0 is
its first positive root.

Definition 1. We call the unit disc D equipped with the conformal metric

ds = J1(j0|z|)|dz|

the Bessel disc.

The following lemma is an immediate consequence of (1).

Lemma 5. In the Bessel disc, L2 = 4πA.
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Figure 1: This is a plot of the conformal factor ρ(r) = j0J1(j0r) for the Bessel disk.
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Figure 2: This is a plot of the curvature K = −ρ−2∆ log(ρ) for the Bessel disk.

We conclude this section by exploring the geometry of the Bessel disk. It is convenient to
recall the formula for the Gauss curvature of a conformal metric. In general the metric ds = ρ|dz|
has Gauss curvature

K = − 1
ρ2

∆(log ρ).

In particular, negative curvature is equivalent to log ρ being subharmonic.
Observe that the Bessel disk has positive curvature, which blows up logarithmically at the

origin. We include plots of the curvature and the Gauss-Bonnet integrand for the reader’s en-
lightenment.

Lemma 6. The total curvature of the Bessel disc is 4π.

7



Figure 3: This is a plot of the Gauss-Bonnet integrand KdA = −∆ log(ρ)|dz|2 for the Bessel disk.

Proof. Let ρ(z) = J1(j0|z|), so that∫
D
KdA = −

∫
D

∆ log ρ
ρ2

ρ2|dz|2 = −2π
∫ 1

0

[(log ρ)′′(r) + r−1(log ρ)′(r)]rdr

= −2π
∫ 1

0

r(log ρ)′′(r) + (log ρ)′(r)dr = −2π
∫ 1

0

d

dr
(r(log ρ)′)dr

= 2π
(
rρ′(r)
ρ(r)

)∣∣∣∣1
0

= 2π
(

lim
r→0

rj0J
′
1(j0r)

J1(j0r)
− j0J

′
1(j0)

J1(j0)

)
= 4π.

Here we have used Bessel identities to show j0J
′
1(j0) = −J1(j0).

Looking closely at this computation, we see that the Gauss-Bonnet integrand is an exact
derivative, and so there are two terms which contribute to the total curvature: a boundary term
and an interior term at the critical point of the first eigenfunction. For any bounded domain D
with Lipschitz boundary, the local behavior of its first eigenfunction near a critical point will be
that of the Bessel function at the origin of the disk, at least to first order. Thus, the computation
above shows that any critical point of the first eigenfunction will contribute 2π to the total
curvature of (D, |∇φ|2|dz|2), where φ is the first eigenfunction of D. It therefore seems natural to
conjecture that, for instance, the total curvature of (D, |∇φ|2|dz|2) is exactly 4π for any convex
domain D.

We contrast the Bessel disk with the isoperimetric inequalities of Topping [9] and Morgan-
Hutchings-Howard [5]. They prove that a rotationally symmetric metric with a monotone curva-
ture function will achieve equality in each of their inequalities. On the other hand, one can verify
the following properties of the Bessel disk by explicit computation. First, it is a rotationally
symmetric metric, which realizes equality in both the isoperimetric inequalities of [9] and [5].
Second, the curvature is not monotone. It remains an interesting open question to characterize
which metrics achieve equality in the isoperimetric inequalities of [9] and [5].
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