The method of rotations tight frames: sharp upper bounds on Laplace eigenvalues
 (joint work with Richard Laugesen)

Bartłomiej Siudeja

University of Illinois

Carthage, May 27, 2010

Dirichlet eigenvalues

Let λ_{i} be all solutions of $-\Delta u=\lambda u$, where Δ is the Dirichlet Laplacian on a domain Ω. Then

$$
0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \rightarrow \infty
$$

Neumann eigenvalues

Let λ_{i} be all solutions of $-\Delta u=\lambda u$, where Δ is the Neumann Laplacian on a domain Ω. Then

$$
0=\mu_{1}<\mu_{2} \leq \mu_{3} \leq \mu_{4} \leq \cdots \rightarrow \infty .
$$

How do eigenvalues change under stretching of the domain?

How do eigenvalues change under stretching of the domain?

Exact formulas for Dirichlet eigenvalues of rectangles

$$
\lambda_{n, m}=\pi^{2}\left(\frac{n^{2}}{a^{2}}+\frac{m^{2}}{b^{2}}\right), m, n \geq 1
$$

How do eigenvalues change under stretching of the domain?

Exact formulas for Dirichlet eigenvalues of rectangles

$$
\lambda_{n, m}=\pi^{2}\left(\frac{n^{2}}{a^{2}}+\frac{m^{2}}{b^{2}}\right), m, n \geq 1
$$

Some examples for $\lambda_{1,1} A\left(=\lambda_{1} A\right)$

$$
a=2, b=1: \quad \frac{5}{2} \pi^{2}
$$

How do eigenvalues change under stretching of the domain?

Exact formulas for Dirichlet eigenvalues of rectangles

$$
\lambda_{n, m}=\pi^{2}\left(\frac{n^{2}}{a^{2}}+\frac{m^{2}}{b^{2}}\right), m, n \geq 1
$$

Some examples for $\lambda_{1,1} A\left(=\lambda_{1} A\right)$

$$
\begin{array}{lll}
a=2, b=1: & \frac{5}{2} \pi^{2}, \\
a=2, b=2: & 2 \pi^{2}, & \\
a=4, b=1: & & \frac{17}{4} \pi^{2} .
\end{array} \quad \text { (vertical stretch) }
$$

How do eigenvalues change under stretching of the domain?
Exact formulas for Dirichlet eigenvalues of rectangles

$$
\lambda_{n, m}=\pi^{2}\left(\frac{n^{2}}{a^{2}}+\frac{m^{2}}{b^{2}}\right), m, n \geq 1
$$

Some examples for $\lambda_{1,1} A\left(=\lambda_{1} A\right)$

$$
\begin{array}{ll}
a=2, b=1: & \frac{5}{2} \pi^{2}, \\
a=2, b=2: & 2 \pi^{2}, \\
a=4, b=1: & \frac{17}{4} \pi^{2} .
\end{array} \quad \text { (vertical stretch) }
$$

Theorem (Pólya)

Among all quadrilaterals, squares minimize $\lambda_{1} A=\lambda_{1,1} A$.

Some examples for $\lambda_{1} \frac{A^{2}}{L^{2}}$ (L - perimeter)

$$
\begin{array}{ll}
a=2, b=1: & \frac{250}{1800} \pi^{2}, \\
a=2, b=2: & \frac{225}{1800} \pi^{2}, \\
a=4, b=1: & \frac{306}{1800} \pi^{2} .
\end{array}
$$

Some examples for $\lambda_{1} \frac{A^{2}}{L^{2}}$ (L - perimeter)

$$
\begin{array}{ll}
a=2, b=1: & \frac{250}{1800} \pi^{2}, \\
a=2, b=2: & \frac{225}{1800} \pi^{2}, \\
a=4, b=1: & \frac{306}{1800} \pi^{2} .
\end{array}
$$

Some examples for $\lambda_{1} \frac{A^{3}}{I}$ (I-moment of inertia)

Some examples for $\lambda_{1} \frac{A^{2}}{L^{2}}$ (L - perimeter)

$$
\begin{array}{ll}
a=2, b=1: & \frac{250}{1800} \pi^{2}, \\
a=2, b=2: & \frac{225}{1800} \pi^{2}, \\
a=4, b=1: & \frac{306}{1800} \pi^{2} .
\end{array}
$$

Some examples for $\lambda_{1} \frac{A^{3}}{I}$ (I-moment of inertia)

$$
\begin{array}{ll}
a=2, b=1: & 12 \pi^{2} \\
a=2, b=2: & 12 \pi^{2}, \\
a=4, b=1: & 12 \pi^{2} .
\end{array}
$$

Theorem (Hersch, 1966)

Among parallelograms, squares maximize $\lambda_{1} \frac{A^{3}}{I}$.

Theorem (Freitas, 2006)

Among triangles, equilateral triangles maximize $\lambda_{1} \frac{A^{3}}{T}$.

Authors use exact formulas for eigenfunctions and get bounds in terms of side-lengths. Their results are equivalent to moments of inertia.

Theorem (Hersch, 1966)

Among parallelograms, squares maximize $\lambda_{1} \frac{A^{3}}{I}$.

Theorem (Freitas, 2006)

Among triangles, equilateral triangles maximize $\lambda_{1} \frac{A^{3}}{T}$.

Authors use exact formulas for eigenfunctions and get bounds in terms of side-lengths. Their results are equivalent to moments of inertia.

Theorem (Pólya, 1952, Pólya \& Schiffer, 1954)
Start with an n-fold rotationally symmetric domain. Among all domains obtained by stretching, the original domain maximizes $\lambda_{1} \frac{A^{3}}{I}$.

This result follows from rotational symmetry of the first eigenfunction.

Theorem (Laugesen \& Siudeja, 2010)

Suppose D has N-fold rotational symmetry of order $N \geq 3$ and T be a linear transformation. Then

$$
\left.\left(\lambda_{1}+\cdots+\lambda_{n}\right)\right|_{T(D)} \leq\left.\frac{1}{2}\left\|T^{-1}\right\|_{H S}^{2}\left(\lambda_{1}+\cdots+\lambda_{n}\right)\right|_{D},
$$

$\|M\|_{H S}^{2}=\sum M_{i j}^{2}$ (Hilbert-Schmidt norm). Equality holds if $T=I d$.

Theorem (Laugesen \& Siudeja, 2010)

Suppose D has N-fold rotational symmetry of order $N \geq 3$ and T be a linear transformation. Then

$$
\begin{aligned}
& \left.\left(\lambda_{1}+\cdots+\lambda_{n}\right)\right|_{T(D)} \leq\left.\frac{1}{2}\left\|T^{-1}\right\|_{H S}^{2}\left(\lambda_{1}+\cdots+\lambda_{n}\right)\right|_{D,}, \\
& \left.\left(\mu_{1}+\cdots+\mu_{n}\right)\right|_{T(D)} \leq\left.\frac{1}{2}\left\|T^{-1}\right\|_{H S}^{2}\left(\mu_{1}+\cdots+\mu_{n}\right)\right|_{D .} .
\end{aligned}
$$

$\|M\|_{H S}^{2}=\sum M_{i j}^{2}$ (Hilbert-Schmidt norm). Equality holds if $T=I d$.

Theorem (Laugesen \& Siudeja, 2010)

Suppose D has N-fold rotational symmetry of order $N \geq 3$ and T be a linear transformation. Then

$$
\begin{aligned}
& \left.\left(\lambda_{1}+\cdots+\lambda_{n}\right)\right|_{T(D)} \leq\left.\frac{1}{2}\left\|T^{-1}\right\|_{H S}^{2}\left(\lambda_{1}+\cdots+\lambda_{n}\right)\right|_{D}, \\
& \left.\left(\mu_{1}+\cdots+\mu_{n}\right)\right|_{T(D)} \leq\left.\frac{1}{2}\left\|T^{-1}\right\|_{H S}^{2}\left(\mu_{1}+\cdots+\mu_{n}\right)\right|_{D} .
\end{aligned}
$$

$\|M\|_{H S}^{2}=\sum M_{i j}^{2}$ (Hilbert-Schmidt norm). Equality holds if $T=I d$.
The proof is very flexible
Similar results can be obtained for

- Robin boundary conditions,
- certain Schrödinger operators,
- some nonlocal operators.

Method of Rotations and Tight Frames

Let u_{i} be orthonormal eigenfunctions on D and U_{m} a rotation by $2 \pi m / N$. By taking a trial functions $u_{i} \circ U_{m} \circ T^{-1}$ on $T(D)$

$$
\sum_{i} \lambda_{i}(T(D)) \leq \sum_{i} \int_{D}\left|\left(\nabla u_{i}\right) U_{m} T^{-1}\right|^{2} d x=\sum_{i} \sum_{k} \int_{D}\left|\left(\nabla u_{i}\right) U_{m} T_{k}^{-1}\right|^{2} d x
$$

U rotation

Method of Rotations and Tight Frames

Let u_{i} be orthonormal eigenfunctions on D and U_{m} a rotation by $2 \pi m / N$. By taking a trial functions $u_{i} \circ U_{m} \circ T^{-1}$ on $T(D)$
$\sum_{i} \lambda_{i}(T(D)) \leq \sum_{i} \int_{D}\left|\left(\nabla u_{i}\right) U_{m} T^{-1}\right|^{2} d x=\sum_{i} \sum_{k} \int_{D}\left|\left(\nabla u_{i}\right) U_{m} T_{k}^{-1}\right|^{2} d x$
We average over $m=1, \ldots, N$ using Plancherel identity for rotational orbit $\left\{U_{1} \vec{t}, \ldots, U_{N} \vec{t}\right\}$ (Tight Frame)

$$
\frac{1}{N} \sum_{m=1}^{N} \left\lvert\, \vec{s} \cdot\left(\left.U_{m} \vec{t}\right|^{2}=\frac{1}{2}|\vec{s}|^{2}|\vec{t}|^{2},\right.\right.
$$

where $\vec{s}=(\nabla u)^{\dagger}$ and $\vec{t}=T_{k}^{-1}$.

Method of Rotations and Tight Frames

Let u_{i} be orthonormal eigenfunctions on D and U_{m} a rotation by $2 \pi m / N$. By taking a trial functions $u_{i} \circ U_{m} \circ T^{-1}$ on $T(D)$

$$
\sum_{i} \lambda_{i}(T(D)) \leq \sum_{i} \int_{D}\left|\left(\nabla u_{i}\right) U_{m} T^{-1}\right|^{2} d x=\sum_{i} \sum_{k} \int_{D}\left|\left(\nabla u_{i}\right) U_{m} T_{k}^{-1}\right|^{2} d x
$$

We average over $m=1, \ldots, N$ using Plancherel identity for rotational orbit $\left\{U_{1} \vec{t}, \ldots, U_{N} \vec{t}\right\}$ (Tight Frame)

$$
\frac{1}{N} \sum_{m=1}^{N} \left\lvert\, \vec{s} \cdot\left(\left.U_{m} \vec{t}\right|^{2}=\frac{1}{2}|\vec{s}|^{2}|\vec{t}|^{2},\right.\right.
$$

where $\vec{s}=(\nabla u)^{\dagger}$ and $\vec{t}=T_{k}^{-1}$.

$$
\sum_{i} \lambda_{i}(T(D)) \leq \sum_{i} \sum_{k} \int_{D}\left|\nabla u_{i}\right|^{2}\left|T_{k}^{-1}\right|^{2} d x=\frac{\left\|T^{-1}\right\|_{H S}^{2}}{2} \sum_{i} \int_{D}\left|\nabla u_{i}\right|^{2} d x
$$

Mercedes Tight Frame: N=3.

$$
\sum_{m=1}^{3}\left|\vec{s} \cdot\left(U_{m} \vec{t}\right)\right|^{2}=\frac{3}{2}|\vec{s}|^{2}|\vec{t}|^{2}
$$

Corollary (Case $n=1$ proved by Pólya, 52)

$\left(\lambda_{1}+\cdots+\lambda_{n}\right) A \frac{A^{2}}{l} \quad$ maximal for $\left\{\begin{array}{l}\text { equilateral among triangles } \\ \text { square among parallelograms } \\ \text { disk among ellipses }\end{array}\right.$

Corollary (Case $n=1$ proved by Pólya, 52)

$\left(\lambda_{1}+\cdots+\lambda_{n}\right) A \frac{A^{2}}{l} \quad$ maximal for $\left\{\begin{array}{l}\text { equilateral among triangles } \\ \text { square among parallelograms } \\ \text { disk among ellipses }\end{array}\right.$

Note that A^{2} / I is a scale invariant factor that measures deviation of a domain from roundness.

Corollary (Case $n=1$ proved by Pólya, 52)

$\left(\lambda_{1}+\cdots+\lambda_{n}\right) A \frac{A^{2}}{l} \quad$ maximal for $\left\{\begin{array}{l}\text { equilateral among triangles } \\ \text { square among parallelograms } \\ \text { disk among ellipses }\end{array}\right.$

Note that A^{2} / I is a scale invariant factor that measures deviation of a domain from roundness.

Proof

Taking trace of moment matrix of $T(D)$ gives

$$
\frac{1}{2}\left\|T^{-1}\right\|_{H S}^{2}=\frac{1}{A^{3}}(T(D)) / \frac{l}{A^{3}}(D) .
$$

Higher dimensions

Theorem (Laugesen \& Siudeja, 2010)

Let D be a d-dimensional tetrahedron, or a cube, or a ball. (Then $T(D)$ is a simplex, or a parallelepiped, or an ellipsoid.) We have

$$
\left.\left(\lambda_{1}+\cdots+\lambda_{n}\right)\right|_{T(D)} \leq\left.\frac{1}{d}\left\|T^{-1}\right\|_{H S}^{2}\left(\lambda_{1}+\cdots+\lambda_{n}\right)\right|_{D}
$$

Higher dimensions

Theorem (Laugesen \& Siudeja, 2010)

Let D be a d-dimensional tetrahedron, or a cube, or a ball. (Then $T(D)$ is a simplex, or a parallelepiped, or an ellipsoid.) We have

$$
\left.\left(\lambda_{1}+\cdots+\lambda_{n}\right)\right|_{T(D)} \leq\left.\frac{1}{d}\left\|T^{-1}\right\|_{H S}^{2}\left(\lambda_{1}+\cdots+\lambda_{n}\right)\right|_{D},
$$

The proof is the same, except that Tight Frames are obtained from rotation groups of symmetric solids. Schur's Lemma.

Higher dimensions

Theorem (Laugesen \& Siudeja, 2010)

Let D be a d-dimensional tetrahedron, or a cube, or a ball. (Then $T(D)$ is a simplex, or a parallelepiped, or an ellipsoid.) We have

$$
\left.\left(\lambda_{1}+\cdots+\lambda_{n}\right)\right|_{T(D)} \leq\left.\frac{1}{d}\left\|T^{-1}\right\|_{H S}^{2}\left(\lambda_{1}+\cdots+\lambda_{n}\right)\right|_{D},
$$

The proof is the same, except that Tight Frames are obtained from rotation groups of symmetric solids. Schur's Lemma.

Corollary

$$
\left.\left.\left(\lambda_{1}+\cdots+\lambda_{n}\right) V^{2 / d}\right|_{T(D)} \cdot \frac{V^{1+2 / d}}{l}\right|_{T-1(D)} \quad \text { maximal for } T=\text { ldentity }
$$

$$
\left.\left.\lambda_{1} V^{2 / 3}\right|_{T(D)} \cdot \frac{V^{1+2 / 3}}{l}\right|_{T-1(D)} \quad \text { maximal for } T=\text { ddentity }
$$

Intuition for using $T^{-1}(D)$

$$
\left.\left.\lambda_{1} V^{2 / 3}\right|_{T(D)} \cdot \frac{V^{1+2 / 3}}{l}\right|_{T-1(D)} \quad \text { maximal for } T=\text { ddentity }
$$

Intuition for using $T^{-1}(D)$

$$
\left.\lambda_{1} \frac{V^{1+4 / 3}}{I}\right|_{T(D)} \quad \text { maximal for } T=\text { Identity }
$$

Intuition for using $T^{-1}(D)$

$T(D)$

$$
\begin{aligned}
& \lambda_{1}=\pi^{2}\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right) \\
& I=\frac{V}{12}\left(a^{2}+b^{2}+c^{2}\right)
\end{aligned}
$$

$$
\left.\lambda_{1} \frac{V^{1+4 / 3}}{l}\right|_{T(D)} \quad \text { maximal for } T=\text { Identity }
$$

Intuition for using $T^{-1}(D)$

$T(D)$

$$
\begin{aligned}
& \lambda_{1}=\pi^{2}\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right) \\
& I=\frac{V}{12}\left(a^{2}+b^{2}+c^{2}\right)
\end{aligned}
$$

$$
\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right) \frac{(a b c)^{4 / 3}}{a^{2}+b^{2}+c^{2}}
$$

$$
\left.\lambda_{1} \frac{V^{1+4 / 3}}{l}\right|_{T(D)} \quad \text { maximal for } T=\text { Identity }
$$

Intuition for using $T^{-1}(D)$

$T(D)$

$$
\begin{aligned}
& \lambda_{1}=\pi^{2}\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right) \\
& I=\frac{V}{12}\left(a^{2}+b^{2}+c^{2}\right)
\end{aligned}
$$

$$
\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right) \frac{(a b c)^{4 / 3}}{a^{2}+b^{2}+c^{2}} \approx \frac{c^{4 / 3}}{c^{2}} \xrightarrow{c \rightarrow 0} \infty
$$

Method of Rotations and Tight Frames

Geometrically flexible

For any rotationally symmetric domains even if eigenvalues are unknown.

Method of Rotations and Tight Frames

Geometrically flexible

For any rotationally symmetric domains even if eigenvalues are unknown.

Geometrically sharp

Explicit extremal domains.

Method of Rotations and Tight Frames

Geometrically flexible

For any rotationally symmetric domains even if eigenvalues are unknown.

Geometrically sharp
 Explicit extremal domains.

Universally applicable

All eigenvalue sums for all boundary conditions.

Higher dimensional case
 We only need rotation group of a solid to be irreducible.

Higher dimensional case

We only need rotation group of a solid to be irreducible.
This just means that the set $\left\{U_{1} \vec{t}, U_{2} \vec{t}, \ldots, U_{n} \vec{t}\right\}$ spans the whole space for any vector $\vec{t} \neq 0$.

In particular we could use a domain obtained from a cube by adding a rotationally invariant variation to each face.

General convex domains

- To get an upper bound with disk as a maximizer we cannot evaluate the roundness controlling factor on the original domain.
- We need a kind of inverse (dual) domain.

$$
\left.\left.\lambda_{1} V^{2 / d}\right|_{D} \cdot \frac{V^{1+2 / d}}{I}\right|_{D^{\circ}}
$$

Higher dimensional case

We only need rotation group of a solid to be irreducible.
This just means that the set $\left\{U_{1} \vec{t}, U_{2} \vec{t}, \ldots, U_{n} \vec{t}\right\}$ spans the whole space for any vector $\vec{t} \neq 0$.

In particular we could use a domain obtained from a cube by adding a rotationally invariant variation to each face.

General convex domains

- To get an upper bound with disk as a maximizer we cannot evaluate the roundness controlling factor on the original domain.
- We need a kind of inverse (dual) domain. Possibly a polar dual.

$$
\left.\left.\lambda_{1} V^{2 / d}\right|_{D} \cdot \frac{V^{1+2 / d}}{I}\right|_{D^{\circ}}
$$

