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Abstract: We give a proper fractional extension of the classical calculus of variations. Necessary
optimality conditions of Euler-Lagrange type for variational problems containing both fractional
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mixed integer and fractional order derivatives as well as isoperimetric problems are considered.
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1. INTRODUCTION

One of the classical problems of mathematics consists in
finding a closed plane curve of a given length that encloses
the greatest area: the isoperimetric problem. The legend
says that the first person who solved the isoperimetric
problem was Dido, the queen of Carthage, who was offered
as much land as she could surround with the skin of a
bull. Dido’s problem is nowadays part of the calculus of
variations [Gelfand and Fomin, 1963, van Brunt, 2004].

Fractional calculus is a generalization of (integer) differ-
ential calculus, allowing to define derivatives (and inte-
grals) of real or complex order [Kilbas et al., 2006, Miller
and Ross, 1993, Podlubny, 1999]. The first application of
fractional calculus belongs to Niels Henrik Abel (1802–
1829) and goes back to 1823 [Abel, 1965]. Abel applied the
fractional calculus to the solution of an integral equation
which arises in the formulation of the tautochrone problem.
This problem, sometimes also called the isochrone problem,
is that of finding the shape of a frictionless wire lying in a
vertical plane such that the time of a bead placed on the
wire slides to the lowest point of the wire in the same time
regardless of where the bead is placed. The cycloid is the
isochrone as well as the brachistochrone curve: it gives the
shortest time of slide and marks the born of the calculus
of variations.

The study of fractional problems of the calculus of vari-
ations and respective Euler-Lagrange type equations is
a subject of current strong research due to its many
applications in science and engineering, including me-
chanics, chemistry, biology, economics, and control the-
ory. In 1996-1997 Riewe obtained a version of the Euler–
Lagrange equations for fractional variational problems
combining the conservative and nonconservative cases
[Riewe, 1996, 1997]. Since then, numerous works on the
fractional calculus of variations, fractional optimal control
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and its applications have been written—see, e.g., [Agrawal,
2002, Agrawal and Baleanu, 2007, Almeida and Torres,
2009a, 2010, Atanacković et al., 2008, Baleanu, 2008, El-
Nabulsi and Torres, 2007, Frederico and Torres, 2007,
2008, Klimek, 2002, Malinowska and Torres, 2010] and
references therein. For the study of fractional isoperimetric
problems see [Almeida et al., 2009].

In the pioneering paper [Agrawal, 2002], and others that
followed, the fractional necessary optimality conditions are
proved under the hypothesis that admissible functions y
have continuous left and right fractional derivatives on the
closed interval [a, b]. By considering that the admissible
functions y have continuous left fractional derivatives on
the whole interval, then necessarily y(a) = 0; by consider-
ing that the admissible functions y have continuous right
fractional derivatives, then necessarily y(b) = 0. This fact
has been independently remarked, in different contexts, at
least in [Almeida et al., 2009, Almeida and Torres, 2010,
Atanacković et al., 2008, Jelicic and Petrovacki, 2009].
In our work we want to be able to consider arbitrarily
given boundary conditions y(a) = ya and y(b) = yb (and
isoperimetric constraints). For that we consider variational
functionals with integrands involving not only a fractional
derivative of order α ∈ (0, 1) of the unknown function
y, but also the classical derivative y′. More precisely, we
consider dependence of the integrands on the independent
variable t, unknown function y, and y′ + k aD

α
t y with k

a real parameter. As a consequence, one gets a proper
extension of the classical calculus of variations, in the sense
that the classical theory is recovered with the particular
situation k = 0. We remark that this is not the case with
all the previous literature on the fractional variational
calculus, where the classical theory is not included as a
particular case and only as a limit, when α→ 1.

The text is organized as follows. In Section 2 we briefly
recall the necessary definitions and properties of the frac-
tional calculus in the sense of Riemann-Liouville. Our
results are stated, proved, and illustrated through an ex-
ample, in Section 3. We end with Section 4 of conclusion.



2. PRELIMINARIES

In this section some basic definitions and properties of
fractional calculus are presented. For more on the subject
we refer the reader to the books [Kilbas et al., 2006, Miller
and Ross, 1993, Podlubny, 1999].
Definition 1. (Left and right Riemann-Liouville derivatives).
Let f be a function defined on [a, b]. The operator aDα

t ,

aD
α
t f(t) =

1
Γ(n− α)

Dn

∫ t

a

(t− τ)n−α−1f(τ)dτ ,

is called the left Riemann-Liouville fractional derivative of
order α, and the operator tDα

b ,

tD
α
b f(t) =

−1
Γ(n− α)

Dn

∫ b

t

(τ − t)n−α−1f(τ)dτ ,

is called the right Riemann-Liouville fractional derivative
of order α, where α ∈ R+ is the order of the derivatives
and the integer number n is such that n− 1 ≤ α < n.
Definition 2. (Mittag-Leffler function). Let α, β > 0. The
Mittag-Leffler function is defined by

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
.

Theorem 3. (Integration by parts). If f, g and the frac-
tional derivatives aDα

t g and tD
α
b f are continuous at every

point t ∈ [a, b], then∫ b

a

f(t)aDα
t g(t)dt =

∫ b

a

g(t)tDα
b f(t)dt (1)

for any 0 < α < 1.
Remark 4. If f(a) 6= 0, then aD

α
t f(t)|t=a =∞. Similarly,

if f(b) 6= 0, then tD
α
b f(t)|t=b = ∞. Thus, if f possesses

continuous left and right Riemann-Liouville fractional
derivatives at every point t ∈ [a, b], then f(a) = f(b) = 0.
This explains why the usual term f(t)g(t)|ba does not
appear on the right-hand side of (1).

3. MAIN RESULTS

Following [Jelicic and Petrovacki, 2009], we prove opti-
mality conditions of Euler-Lagrange type for variational
problems containing classical and fractional derivatives
simultaneously. In Section 3.1 the fundamental variational
problem is considered, while in Section 3.2 we study the
isoperimetric problem. Our results cover fractional vari-
ational problems subject to arbitrarily given boundary
conditions. This is in contrast with [Agrawal, 2002, 2008,
Agrawal and Baleanu, 2007, Baleanu et al., 2009], where
the necessary optimality conditions are valid for appropri-
ate zero valued boundary conditions (cf. Remark 4). For a
discussion on this matter see [Almeida and Torres, 2010,
Atanacković et al., 2008, Jelicic and Petrovacki, 2009].

3.1 The Euler-Lagrange equation

Let 0 < α < 1. Consider the following problem: find a
function y ∈ C1[a, b] for which the functional

J (y) =
∫ b

a

F (t, y(t), y′(t) + k aD
α
t y(t)) dt (2)

subject to given boundary conditions
y(a) = ya, y(b) = yb, (3)

has an extremum. We assume that k is a fixed real number,
F ∈ C2([a, b] × R2; R), and ∂3F (the partial derivative
of F (·, ·, ·) with respect to its third argument) has a
continuous right Riemann-Liouville fractional derivative of
order α.
Definition 5. A function y ∈ C1[a, b] that satisfies the
given boundary conditions (3) is said to be admissible for
problem (2)-(3).

For simplicity of notation we introduce the operator [y]αk
defined by

[y]αk (t) = (t, y(t), y′(t) + k aD
α
t y(t)) .

With this notation we can write (2) simply as

J (y) =
∫ b

a

F [y]αk (t)dt .

Theorem 6. (The fractional Euler-Lagrange equation). If y
is an extremizer (minimizer or maximizer) of problem (2)-
(3), then y satisfies the Euler-Lagrange equation

∂2F [y]αk (t)− d

dt
∂3F [y]αk (t) + k tD

α
b ∂3F [y]αk (t) = 0 (4)

for all t ∈ [a, b].

Proof. Suppose that y is a solution of (2)-(3). Note
that admissible functions ŷ can be written in the form
ŷ(t) = y(t)+εη(t), where η ∈ C1[a, b], η(a) = η(b) = 0, and
ε ∈ R. Let J(ε) =

∫ b
a
F (t, y(t) + εη(t), ddt (y(t) + εη(t)) +

kaD
α
t (y(t) + εη(t)))dt. Since aD

α
t is a linear operator, we

know that

aD
α
t (y(t) + εη(t)) =a Dα

t y(t) + εaD
α
t η(t).

On the other hand,

dJ

dε

∣∣∣∣
ε=0

=
∫ b

a

d

dε
F [ŷ]αk (t)dt

∣∣∣∣∣
ε=0

=
∫ b

a

(
∂2F [y]αk (t) · η(t) + ∂3F [y]αk (t)

dη(t)
dt

+ k∂3F [y]αk (t)aDα
t η(t)

)
dt.

(5)

Using integration by parts we get∫ b

a

∂3F
dη

dt
dt = ∂3Fη|ba −

∫ b

a

(η
d

dt
∂3F )dt (6)

and

k

∫ b

a

∂3FaD
α
t ηdt =

∫ b

a

ηtDb∂3Fdt. (7)

Substituting (6) and (7) into (5), and having in mind that
η(a) = η(b) = 0, it follows that

dJ

dε

∣∣∣∣
ε=0

=
∫ b

a

η(t)
(
∂2F [y]αk (t)− d

dt
∂3F [y]αk (t)

+ k tD
α
b ∂3F [y]αk (t)

)
dt.

A necessary optimality condition is given by dJ
dε

∣∣
ε=0

= 0.
Hence,∫ b

a

η(t)
(
∂2F [y]αk (t)− d

dt
∂3F [y]αk (t)

+ k tD
α
b ∂3F [y]αk (t)

)
dt = 0. (8)

We obtain (4) applying the fundamental lemma of the
calculus of variations to (8).



Remark 7. Note that for k = 0 our necessary optimality
condition (4) reduces to the classical Euler-Lagrange equa-
tion [Gelfand and Fomin, 1963, van Brunt, 2004].

3.2 The fractional isoperimetric problem

As before, let 0 < α < 1. We now consider the problem of
extremizing a functional

J (y) =
∫ b

a

F (t, y(t), y′(t) + k aD
α
t y(t)) dt (9)

in the class y ∈ C1[a, b] when subject to given boundary
conditions

y(a) = ya , y(b) = yb, (10)
and an isoperimetric constraint

I(y) =
∫ b

a

G(t, y(t), y′(t) + k aD
α
t y(t))dt = ξ . (11)

We assume that k and ξ are fixed real numbers, F,G ∈
C2([a, b]×R2; R), and ∂3F and ∂3G have continuous right
Riemann-Liouville fractional derivatives of order α.
Definition 8. A function y ∈ C1[a, b] that satisfies the
given boundary conditions (10) and isoperimetric con-
straint (11) is said to be admissible for problem (9)-(11).
Definition 9. An admissible function y is an extremal for
I if it satisfies the fractional Euler-Lagrange equation

∂2G[y]αk (t)− d

dt
∂3G[y]αk (t) + k tD

α
b ∂3G[y]αk (t) = 0

for all t ∈ [a, b].

The next theorem gives a necessary optimality condition
for the fractional isoperimetric problem (9)-(11).
Theorem 10. Let y be an extremizer to the functional
(9) subject to the boundary conditions (10) and the
isoperimetric constraint (11). If y is not an extremal for I,
then there exists a constant λ such that

∂2H[y]αk (t)− d

dt
∂3H[y]αk (t) + k tD

α
b ∂3H[y]αk (t) = 0 (12)

for all t ∈ [a, b], where H(t, y, v) = F (t, y, v)− λG(t, y, v).

Proof. We introduce the two parameter family
ŷ = y + ε1η1 + ε2η2, (13)

in which η1 and η2 are such that η1, η2 ∈ C1[a, b] and they
have continuous left and right fractional derivatives. We
also require that

η1(a) = η1(b) = 0 = η2(a) = η2(b).
First we need to show that in the family (13) there are
curves such that ŷ satisfies (11). Substituting y by ŷ in
(11), I(ŷ) becomes a function of two parameters ε1, ε2.
Let

Î(ε1, ε2) =
∫ b

a

G(t, ŷ, ŷ′ + kaD
α
t ŷ)dt− ξ.

Then, Î(0, 0) = 0 and

∂Î

∂ε2

∣∣∣∣∣
(0,0)

=
∫ b

a

η2

(
∂2G−

d

dt
∂3G+ ktD

α
b ∂3G

)
dt.

Since y is not an extremal for I, by the fundamental lemma
of the calculus of variations there is a function η2 such that

∂Î

∂ε2

∣∣∣∣∣
(0,0)

6= 0.

By the implicit function theorem, there exists a function
ε2(·) defined in a neighborhood of (0, 0) such that

Î(ε1, ε2(ε1)) = 0.

Let Ĵ(ε1, ε2) = J (ŷ). Then, by the Lagrange multiplier
rule, there exists a real λ such that

∇(Ĵ(0, 0)− λÎ(0, 0)) = 0.
Because

∂Ĵ

∂ε1

∣∣∣∣∣
(0,0)

=
∫ b

a

η1

(
∂2F −

d

dt
∂3F + ktD

α
b ∂3F

)
dt

and

∂Î

∂ε1

∣∣∣∣∣
(0,0)

=
∫ b

a

η1

(
∂2G−

d

dt
∂3G+ ktD

α
b ∂3G

)
dt,

one has∫ b

a

η1

[(
∂2F −

d

dt
∂3F + ktD

α
b ∂3F

)

− λ
(
∂2G−

d

dt
∂3G+ ktD

α
b ∂3G

)]
dt = 0.

Since η1 is an arbitrary function, (12) follows from the
fundamental lemma of the calculus of variations.

3.3 An example

Let α ∈ (0, 1) and k, ξ ∈ R. Consider the following
fractional isoperimetric problem:

J (y) =
∫ 1

0

(y′ + k 0D
α
t y)2 dt −→ min

I(y) =
∫ 1

0

(y′ + k 0D
α
t y) dt = ξ

y(0) = 0 , y(1) =
∫ 1

0

E1−α,1

(
−k (1− τ)1−α

)
ξdτ.

(14)

In this case the augmented Lagrangian H of Theorem 10
is given by H(t, y, v) = v2− λv. One can easily check that

y(t) =
∫ t

0

E1−α,1

(
−k (t− τ)1−α

)
ξdτ (15)

• is not an extremal for I;
• satisfies y′+k 0D

α
t y = ξ (see, e.g., [Kilbas et al., 2006,

p. 297, Theorem 5.5]).

Moreover, (15) satisfies (12) for λ = 2ξ, i.e.,

− d

dt
(2 (y′ + k 0D

α
t y)− 2ξ)

+ k tD
α
1 (2 (y′ + k 0D

α
t y)− 2ξ) = 0.

We conclude that (15) is the extremal for problem (14).
Example 11. Choose k = 0. In this case the isoperimetric
constraint is trivially satisfied, (14) is reduced to the
classical problem of the calculus of variations

J (y) =
∫ 1

0

(y′(t))2dt −→ min

y(0) = 0 , y(1) = ξ,

(16)

and our general extremal (15) simplifies to the well-known
minimizer y(t) = ξt of (16).



Example 12. When α → 1 the isoperimetric constraint is
redundant with the boundary conditions, and the frac-
tional problem (14) simplifies to the classical variational
problem

J (y) = (k + 1)2
∫ 1

0

y′(t)2dt −→ min

y(0) = 0 , y(1) =
ξ

k + 1
.

(17)

Our fractional extremal (15) gives y(t) = ξ
k+1 t, which is

exactly the minimizer of (17).
Example 13. Choose k = ξ = 1. When α → 0 one gets
from (14) the classical isoperimetric problem

J (y) =
∫ 1

0

(y′(t) + y(t))2 dt −→ min

I(y) =
∫ 1

0

y(t)dt =
1
e

y(0) = 0 , y(1) = 1− 1
e
.

(18)

Our extremal (15) is then reduced to the classical extremal
y(t) = 1− e−t of (18).
Example 14. Choose k = 1 and α = 1

2 . Then (14) gives
the following fractional isoperimetric problem:

J (y) =
∫ 1

0

(
y′ + 0D

1
2
t y
)2

dt −→ min

I(y) =
∫ 1

0

(
y′ + 0D

1
2
t y
)
dt = ξ

y(0) = 0 , y(1) = −ξ
(

1− erfc(1) +
2√
π

)
,

(19)

where erfc is the complementary error function. The ex-
tremal (15) for the particular fractional problem (19) is

y(t) = −ξ
(

1− eterfc(
√
t) +

2
√
t√
π

)
.

4. CONCLUSION

Fractional variational calculus provides a very useful
framework to deal with nonlocal dynamics in Mechanics
and Physics [Baleanu and Trujillo, 2010]. Motivated by
the results and insights of [Almeida et al., 2009, Almeida
and Torres, 2009a, Jelicic and Petrovacki, 2009], in this
paper we generalize previous fractional Euler-Lagrange
equations by proving optimality conditions for fractional
problems of the calculus of variations where the highest
derivative in the Lagrangian is of integer order. This ap-
proach avoids difficulties with the given boundary condi-
tions when in presence of Riemann–Liouville derivatives
[Jelicic and Petrovacki, 2009].

We focus our attention to problems subject to integral
constraints (fractional isoperimetric problems), which have
recently found a broad class of important applications
[Almeida and Torres, 2009b, Bl̊asjö, 2005, Curtis, 2004].
For k = 0 our results are reduced to the classical ones
[van Brunt, 2004]. This is in contrast with the standard
approach to fractional variational calculus, where the
classical (integer-order) case is obtained only in the limit.
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