The isoperimetric problem in surfaces of revolution

Antonio Cañete

Carthage, May 25th 2010

The isoperimetric problem in a surface

For a given surface $M \subset \mathbb{R}^{3}$, we look for the least-perimeter set in M enclosing a fixed quantity of area

The isoperimetric problem in a surface

For a given surface $M \subset \mathbb{R}^{3}$, we look for the least-perimeter set in M enclosing a fixed quantity of area

\rightsquigarrow Isoperimetric regions

The isoperimetric problem in a surface

For a given surface $M \subset \mathbb{R}^{3}$, we look for the least-perimeter set in M enclosing a fixed quantity of area

\rightsquigarrow Isoperimetric regions

- Existence

The isoperimetric problem in a surface

For a given surface $M \subset \mathbb{R}^{3}$, we look for the least-perimeter set in M enclosing a fixed quantity of area

\rightsquigarrow Isoperimetric regions

- Existence
- Bounded by closed embedded curves with constant geodesic curvature

The isoperimetric problem in a surface

For a given surface $M \subset \mathbb{R}^{3}$, we look for the least-perimeter set in M enclosing a fixed quantity of area

\rightsquigarrow Isoperimetric regions

- Existence
- Bounded by closed embedded curves with constant geodesic curvature
- Classified for some surfaces

The isoperimetric problem in a surface

- Plane: Disks

The isoperimetric problem in a surface

- Plane: Disks
- Sphere: Geodesic disks

The isoperimetric problem in a surface

- Plane: Disks
- Sphere: Geodesic disks
- Right cylinder: Geodesic disks and horizontal strips

The isoperimetric problem in a surface

- Plane: Disks
- Sphere: Geodesic disks
- Right cylinder: Geodesic disks and horizontal strips
- Paraboloid: Geodesic disks centered at the origin
I. Benjamini and J. Cao, 1996

The isoperimetric problem in a surface

- Plane: Disks
- Sphere: Geodesic disks
- Right cylinder: Geodesic disks and horizontal strips
- Paraboloid: Geodesic disks centered at the origin
- Planes and spheres with monotonic Gauss curvature
F. Morgan, M. Hutchings and H. Howards, 2000; M. Ritoré, 2001

Our work

We study the isoperimetric problem in:

- symmetric tori of revolution with decreasing Gauss curvature
- symmetric annuli of revolution with increasing Gauss curvature

Our work

- Symmetric tori of revolution with decreasing Gauss curvature:

Standard torus of revolution

Our work

- Symmetric annuli of revolution with increasing Gauss curvature:

One-sheeted hyperboloid and catenoid

Our approach

- Isoperimetric regions are bounded by constant geodesic curvature curves
- Isoperimetric regions are stable regions

Our approach

- Isoperimetric regions are bounded by constant geodesic curvature curves
- Isoperimetric regions are stable regions

\rightsquigarrow isoperimetric candidates

Constant geodesic curvature curves

$M \subset \mathbb{R}^{3}$ surface of revolution
We will see M as a warped product $\mathbb{S}^{1} \times I$ with metric

$$
d s^{2}=f(t)^{2} d \theta^{2}+d t^{2}
$$

where $I \subset \mathbb{R}$ is a real interval, and $f: I \rightarrow \mathbb{R}^{+}$is
a C^{1} real function

Constant geodesic curvature curves

$M \subset \mathbb{R}^{3}$ surface of revolution
We will see M as a warped product $\mathbb{S}^{1} \times I$ with metric

$$
d s^{2}=f(t)^{2} d \theta^{2}+d t^{2},
$$

where $I \subset \mathbb{R}$ is a real interval, and $f: I \rightarrow \mathbb{R}^{+}$is a C^{1} real function
\rightsquigarrow Classification of the curves in M with constant geodesic curvature

Constant geodesic curvature curves

- Circles of revolution: $\mathbb{S}^{1} \times\{t\}, t \in I$

Constant geodesic curvature curves

- Circles of revolution: $\mathbb{S}^{1} \times\{t\}, t \in I$
- Nodoids (bounding disks when closed)

Constant geodesic curvature curves

- Circles of revolution: $\mathbb{S}^{1} \times\{t\}, t \in I$
- Nodoids (bounding disks when closed)
- Unduloids (in general, not closed and embedded)

Annuli with increasing Gauss curvature

In symmetric annuli of revolution with increasing Gauss curvature:

- Existence of isoperimetric regions is not guaranteed (catenoids)

Annuli with increasing Gauss curvature

In symmetric annuli of revolution with increasing Gauss curvature:

- Closed embedded curves with constant geodesic curvature:
$\left\{\begin{array}{l}\text { - circles of revolution } \\ \text { - nodoids } \\ \text { - unduloids }\end{array}\right.$

Annuli with increasing Gauss curvature

The stable regions are

i) disks bounded by nodoids with constant Gauss curvature

Annuli with increasing Gauss curvature

The stable regions are

i) disks bounded by nodoids with constant Gauss curvature
ii) annuli bounded by two circles of revolution (symmetric or non-symmetric)

Annuli with increasing Gauss curvature

The stable regions are
i) disks bounded by nodoids with constant Gauss curvature
ii) annuli bounded by two circles of revolution (symmetric or non-symmetric)
iii) annuli bounded by an unduloid and a circle of revolution

Annuli with increasing Gauss curvature

The stable regions are

i) disks bounded by nodoids with constant Gauss curvature
ii) annuli bounded by two circles of revolution (symmetric or non-symmetric)
iii) annuli bounded by an unduloid and a circle of revolution
iv) unions of a disk and a symmetric annulus

Annuli with increasing Gauss curvature

Finally, the isoperimetric regions are
i) disks with constant Gauss curvature (equal to its maximum)
ii) annuli bounded by two circles of revolution (symmetric or non-symmetric)
iii) annuli bounded by an unduloid and a circle of revolution

Annuli with increasing Gauss curvature

Tori with decreasing Gauss curvature

\rightsquigarrow We can see the torus as a warped product (finite annulus):

Tori with decreasing Gauss curvature

\rightsquigarrow We can see the torus as a warped product (finite annulus):
$M=\mathbb{S}^{1} \times\left[-t_{0}, t_{0}\right], \quad d s^{2}=f(t)^{2} d \theta^{2}+d t^{2}$
By identifying $\mathbb{S}^{1} \times\left\{-t_{0}\right\}$ and $\mathbb{S}^{1} \times\left\{t_{0}\right\}$ \rightarrow Torus of revolution

Tori with decreasing Gauss curvature

In symmetric tori of revolution with decreasing Gauss curvature:

- Existence of isoperimetric regions is guaranteed by compactness

Tori with decreasing Gauss curvature

In symmetric tori of revolution with decreasing Gauss curvature:

- Closed embedded curves with constant

 geodesic curvature:$\left\{\begin{array}{l}\text { - circles of revolution } \\ \text { - nodoids } \\ \text { - unduloids } \\ \text { - vertical geodesics } \\ \text { - helix type curves }\end{array}\right.$

Tori with decreasing Gauss curvature

- Vertical geodesics:

Generating curves of the torus of revolution

Tori with decreasing Gauss curvature

- Helix type curves:

Geodesics in the torus (not closed in general)

Two different helix type curves in $[0,2 \pi] \times\left[-t_{0}, t_{0}\right]$

Tori with decreasing Gauss curvature

The stable regions are
i) disks bounded by nodoids
(symmetric or with constant Gauss curvature)

Tori with decreasing Gauss curvature

The stable regions are
i) disks bounded by nodoids
ii) annuli bounded by two circles of revolution (symmetric or non-symmetric)

Tori with decreasing Gauss curvature

The stable regions are
i) disks bounded by nodoids
ii) annuli bounded by two circles of revolution (symmetric or non-symmetric)
iii) annuli bounded by an unduloid and a circle of revolution

Tori with decreasing Gauss curvature

The stable regions are
i) disks bounded by nodoids
ii) annuli bounded by two circles of revolution (symmetric or non-symmetric)
iii) annuli bounded by an unduloid and a circle of revolution
iv) unions of a disk and a symmetric annulus

Tori with decreasing Gauss curvature

The stable regions are
i) disks bounded by nodoids
ii) annuli bounded by two circles of revolution (symmetric or non-symmetric)
iii) annuli bounded by an unduloid and a circle of revolution
iv) unions of a disk and a symmetric annulus
v) unions of vertical annuli (bounded by vertical geodesics)

Tori with decreasing Gauss curvature

The stable regions are
i) disks bounded by nodoids
ii) annuli bounded by two circles of revolution (symmetric or non-symmetric)
iii) annuli bounded by an unduloid and a circle of revolution
iv) unions of a disk and a symmetric annulus
v) unions of vertical annuli
vi) unions of annuli bounded by helix type curves

Tori with decreasing Gauss curvature

Finally, the isoperimetric regions are
i) disks bounded by nodoids
ii) annuli bounded by two circles of revolution (symmetric or non-symmetric)
iii) annuli bounded by an unduloid and a circle of revolution
iv) vertical annuli bounded by two vertical geodesics
v) unions of a disk and a symmetric annulus

Tori with decreasing Gauss curvature

Isoperimetric regions in symmetric tori of revolution with decreasing Gauss curvature

Main consequences

- Unduloids may appear in the isoperimetric boundaries

Main consequences

- Unduloids may appear in the isoperimetric boundaries
- The Gauss curvature of the surfaces may be piecewise continuous

