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Isoperimetric Function

Let τ be a probability measure in RN .

I Iτ (·) : [0, 1]→ R+ is the Isoperimetric Function of τ :

Iτ (y) = inf{τ+(∂A) | τ(A) = y}.

I For A ⊆ RN , with sufficiently smooth boundary,
τ+(∂A) is the boundary measure of A:

τ+(∂A) = lim
h→0+

τ(Ah \ A)

h
,

where Ah = {x ∈ Rd : d(x ,A) ≤ h}.
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Product probability measures

Let τ be a probability measure on R with density:

dτ(x) = f (x)dx = eψ(x)dx , x ∈ R,

We consider τN the product probability measure of τ :

dτN(x) = f(x) dx =
N∏

i=1

f (xi )dxi , x ∈ RN .
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Isoperimetric Estimates

 Can we estimate IτN (t) in terms of Iτ (t)?

I It always holds: IτN (t) ≤ Iτ (t), ∀t ∈ [0, 1];

I Gaussian: dγ(x) = e−x2/2/
√

2π  IγN (t) = Iγ(t);

I Exponential: dν(x) = 1
2 e−|x |  Iν(t)/2

√
6 ≤ IνN (t) ≤ Iν(t).

[S.G. Bobkov, C. Houdré ’97]

I  logistic measure
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The logistic measure µ

dµ(x) = ex

(1+ex )2 dx .

I µ is a C 2 log-concave measure in R, with inf ψ′′ = 0;

I
µ has Gaussian behaviour close to the
origin and exponential tails;

I its distribution function x(t) satisfies: x ′ = x(1− x)  

Iµ(t) = t(1− t).

I we look for Cµ s.t. Cµ Iµ(t) ≤ IµN (t) ≤ Iµ(t) ∀t ∈ [0, 1].
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The logistic measure µ

aim: Cµ Iµ(t) ≤ IµN (t)

Ingredients:

I the value of best costant in the Poincaré inequality: λµ = 1
4 ;

I an estimate by [F. Barthe, P. Cattiaux, C. Roberto, ’07];

 IµN (t) ≥ C
2 Iµ(t), with C > 0.45.

[F. Barthe, CB, A. Colesanti]
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Optimal sets

A ⊆ RN is an optimal set for the measure τN if τN(A) = t,

IτN (t) = τN+
(∂A).

Consider µN , the N-product logistic measure:

I N = 1  half lines are optimal sets
[S.G. Bobkov, ’96]

I N ≥ 2  can we guess that half spaces are optimal sets?

 what can we say about their stationarity and stablility?
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Stationarity (I order condition)

A ⊂ Rd is a stationary set for τ : dτ = eψ(x) iff

Hψ(∂A) = (N − 1)H(x)− 〈Dψ(x), ν(x)〉
∣∣∣
∂A

= constant,

[C. Rosales, A. Cañete, V. Bayle, F. Morgan, ’08]
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Stationarity of half spaces

Let τ on R: dτ(x) = eψ(x)dx , with ψ ∈ C 2(R) and τ 6= γ. For
v ∈ SN−1 let

HN
v,t =

{
x ∈ RN : 〈x , v〉 < t

}
The half space HN

v,t is stationary for τN if and only if:

I HN
v,t is a coordinate half space; or

I v = 1√
2

(1,−1, 0, ..., 0) and ψ′′ is
√

2t-periodic; or

I v = 1√
2

(1, 1, 0, ..., 0) and

ψ′′ is symmetric with respect to ±
√

2t
2 ;

[F. Barthe, CB, A. Colesanti]
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Stationarity of half spaces for the logistic measure

Half spaces which are stationary for the logistic measure are:

I the coordinate half spaces, and

I HN
v,0 with v = 1√

2
(±1,±1, 0, ..., 0).

[F. Barthe, CB, A. Colesanti]
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Stability (II order condition)

A ⊂ Rd is a stable set for τ : dτ = eψ(x) iff A is stationary and

for every function u ∈ C∞0 (∂A) such that
∫
∂A u(x)f (x) dx = 0∫

∂A
f
(
|D∂Au|2 − K 2u2

)
dH d−1 +

∫
∂A

f u2
〈
D2ψν; ν

〉
dH d−1 ≥ 0,

where ν is the outer unit normal to ∂A.

[C. Rosales, A. Cañete, V. Bayle, F. Morgan, ’08]

Chiara Bianchini, Institut Elie Cartan, Nancy Isoperimetric Bounds for Product Probability Measures



Product measures
Logistic Measure

Stationarity and Stability

stationarity
stability

Stability (II order condition)

A ⊂ Rd is a stable set for τ : dτ = eψ(x) iff A is stationary and

for every function u ∈ C∞0 (∂A) such that
∫
∂A u(x)f (x) dx = 0∫

∂A
f
(
|D∂Au|2 − K 2u2

)
dH d−1 +

∫
∂A

f u2
〈
D2ψν; ν

〉
dH d−1 ≥ 0,

where ν is the outer unit normal to ∂A.
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Stability of half spaces

Let τ on R: dτ(t) = eψ(t)dt, with ψ ∈ C 2(R), ψ′′ < 0 and τ 6= γ.
For v ∈ SN−1 let

HN
v,t =

{
x ∈ RN : 〈x , v〉 < t

}

I If HN
v,t is a coordinate half space and −ψ′′(t) ≤ λτ ;

Then the half space HN
v,t is stable for τN .

Moreover:

I for v = 1√
2

(±1,±1, 0, ..., 0) ,

HN
v,0 is stable if and only if so is H3

v,0, for every N ≥ 3.

[F. Barthe, CB, A. Colesanti]
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Stability of half spaces for the logistic measure

I ∀N ≥ 2 coordinate half spaces with |t| ≥ 2 log(2 +
√

3);

I N = 2, H2
v,0 with v = 1√

2
(±1,±1),

are stable for the logistic measure .

I N ≥ 3 v = 1√
2

(±1,±1, 0, ..., 0) half spaces

HN
v,0 are not stable

 {µ2-stable half spaces} = {x = ±y} ∪ {some coordinate}.
 {µN -stable half spaces} ( { coordinate half spaces }.

[F. Barthe, CB, A. Colesanti]

Chiara Bianchini, Institut Elie Cartan, Nancy Isoperimetric Bounds for Product Probability Measures



Product measures
Logistic Measure

Stationarity and Stability

stationarity
stability

Stability of half spaces for the logistic measure

I ∀N ≥ 2 coordinate half spaces with |t| ≥ 2 log(2 +
√

3);

I N = 2, H2
v,0 with v = 1√

2
(±1,±1),

are stable for the logistic measure .

I N ≥ 3 v = 1√
2

(±1,±1, 0, ..., 0) half spaces

HN
v,0 are not stable

 {µ2-stable half spaces} = {x = ±y} ∪ {some coordinate}.
 {µN -stable half spaces} ( { coordinate half spaces }.

[F. Barthe, CB, A. Colesanti]

Chiara Bianchini, Institut Elie Cartan, Nancy Isoperimetric Bounds for Product Probability Measures



Product measures
Logistic Measure

Stationarity and Stability

stationarity
stability

Stability of half spaces for the logistic measure

I ∀N ≥ 2 coordinate half spaces with |t| ≥ 2 log(2 +
√

3);

I N = 2, H2
v,0 with v = 1√

2
(±1,±1),

are stable for the logistic measure .

I N ≥ 3 v = 1√
2

(±1,±1, 0, ..., 0) half spaces

HN
v,0 are not stable

 {µ2-stable half spaces} = {x = ±y} ∪ {some coordinate}.
 {µN -stable half spaces} ( { coordinate half spaces }.

[F. Barthe, CB, A. Colesanti]

Chiara Bianchini, Institut Elie Cartan, Nancy Isoperimetric Bounds for Product Probability Measures



Product measures
Logistic Measure

Stationarity and Stability

stationarity
stability

Stability of half spaces for the logistic measure

I ∀N ≥ 2 coordinate half spaces with |t| ≥ 2 log(2 +
√

3);

I N = 2, H2
v,0 with v = 1√

2
(±1,±1),

are stable for the logistic measure .

I N ≥ 3 v = 1√
2

(±1,±1, 0, ..., 0) half spaces

HN
v,0 are not stable

 {µ2-stable half spaces} = {x = ±y} ∪ {some coordinate}.
 {µN -stable half spaces} ( { coordinate half spaces }.

[F. Barthe, CB, A. Colesanti]

Chiara Bianchini, Institut Elie Cartan, Nancy Isoperimetric Bounds for Product Probability Measures



Product measures
Logistic Measure

Stationarity and Stability

stationarity
stability

Barthe F., Bianchini C., Colesanti A., “Isoperimetric bounds and stability
of hyperplanes for product probability measures”, work in progress
Barthe F., Cattiaux P., Roberto C., “Isoperimetry between Exponential
and Gaussian”, Electron. J. Probab. 12 (2007), n. 44, 1212-1237
(electronic).
Bobkov, S.G.,“Extremal properties of half-spaces for log-concave
distributions”, Ann. Probab. 24 (1996), no. 1, 35-48.
Bobkov, S.G.,“Isoperimetric and analytic inequalities for log-concave
probability measures”, Ann. Probab. 27 (1999), no. 4, 1903-1921.
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