Interpolating between torsional rigidity and principal frequency (joint work with Jesse Ratzkin)

Tom Carroll

University College Cork

Carthage, $24^{\text {th }}$ May 2010

Principal frequency and torsional rigidity

D is a bounded domain in Euclidean space \mathbb{R}^{n}.

Principal frequency and torsional rigidity

D is a bounded domain in Euclidean space \mathbb{R}^{n}.
Fundamental frequency / bass note / first Dirichlet eigenvalue of the Laplacian $\lambda(D)$ is

$$
\lambda(D)=\inf \left\{\frac{\int_{D}|\nabla u(x)|^{2} d x}{\int_{D} u(x)^{2} d x}: u \in C_{0}^{\infty}(D)\right\}
$$

Rayleigh Quotient

Principal frequency and torsional rigidity

D is a bounded domain in Euclidean space \mathbb{R}^{n}.
Fundamental frequency / bass note / first Dirichlet eigenvalue of the Laplacian $\lambda(D)$ is

$$
\lambda(D)=\inf \left\{\frac{\int_{D}|\nabla u(x)|^{2} d x}{\int_{D} u(x)^{2} d x}: u \in C_{0}^{\infty}(D)\right\}
$$

Rayleigh Quotient

Torsional rigidity $P(D)$ is

$$
\frac{4}{P(D)}=\inf \left\{\frac{\int_{D}|\nabla u(x)|^{2} d x}{\left(\int_{D} u(x) d x\right)^{2}}: u>0, u \in C_{0}^{\infty}(D)\right\}
$$

$\mathcal{C}_{p}(D)$

We study a p-version of these minimisation problems for $1 \leq p<\frac{2 n}{n-2}$ ($p<\infty$ in dimension 2):

$$
\mathcal{C}_{p}(D)=\inf \left\{\Phi_{p}(u)=\frac{\left.\int_{D} \mid \nabla u(x)\right)^{2} d x}{\left(\int_{D} u(x)^{p} d x\right)^{2 / p}}: u>0, u \in C_{0}^{\infty}(D)\right\}
$$

$\mathcal{C}_{p}(D)$

We study a p-version of these minimisation problems for $1 \leq p<\frac{2 n}{n-2}$ ($p<\infty$ in dimension 2):

$$
\mathcal{C}_{p}(D)=\inf \left\{\Phi_{p}(u)=\frac{\int_{D}|\nabla u(x)|^{2} d x}{\left(\int_{D} u(x)^{p} d x\right)^{2 / p}}: u>0, u \in C_{0}^{\infty}(D)\right\}
$$

- $p=1 \longleftrightarrow$ torsional rigidity $4 / P(D)$

$\mathcal{C}_{p}(D)$

We study a p-version of these minimisation problems for $1 \leq p<\frac{2 n}{n-2}$ ($p<\infty$ in dimension 2):

$$
\mathcal{C}_{p}(D)=\inf \left\{\Phi_{p}(u)=\frac{\int_{D}|\nabla u(x)|^{2} d x}{\left(\int_{D} u(x)^{p} d x\right)^{2 / p}}: u>0, u \in C_{0}^{\infty}(D)\right\}
$$

- $p=1 \longleftrightarrow$ torsional rigidity $4 / P(D)$
- $p=2 \longleftrightarrow$ principal frequency $\lambda(D)$

$\mathcal{C}_{p}(D)$

We study a p-version of these minimisation problems for $1 \leq p<\frac{2 n}{n-2}$ ($p<\infty$ in dimension 2):

$$
\mathcal{C}_{p}(D)=\inf \left\{\Phi_{p}(u)=\frac{\int_{D}|\nabla u(x)|^{2} d x}{\left(\int_{D} u(x)^{p} d x\right)^{2 / p}}: u>0, u \in C_{0}^{\infty}(D)\right\}
$$

- $p=1 \longleftrightarrow$ torsional rigidity $4 / P(D)$
- $p=2 \longleftrightarrow$ principal frequency $\lambda(D)$
- What results for $\lambda(D)$ and $P(D)$ extend to $\mathcal{C}_{p}(D)$?

$\mathcal{C}_{p}(D)$

We study a p-version of these minimisation problems for $1 \leq p<\frac{2 n}{n-2}$ ($p<\infty$ in dimension 2):

$$
\mathcal{C}_{p}(D)=\inf \left\{\Phi_{p}(u)=\frac{\int_{D}|\nabla u(x)|^{2} d x}{\left(\int_{D} u(x)^{p} d x\right)^{2 / p}}: u>0, u \in C_{0}^{\infty}(D)\right\}
$$

- $p=1 \longleftrightarrow$ torsional rigidity $4 / P(D)$
- $p=2 \longleftrightarrow$ principal frequency $\lambda(D)$
- What results for $\lambda(D)$ and $P(D)$ extend to $\mathcal{C}_{p}(D)$?
- What can $\mathcal{C}_{p}(D)$ tell us about the common properties of $\lambda(D)$ and $P(D)$?

$\mathcal{C}_{p}(D)$

We study a p-version of these minimisation problems for $1 \leq p<\frac{2 n}{n-2}$ ($p<\infty$ in dimension 2):

$$
\mathcal{C}_{p}(D)=\inf \left\{\Phi_{p}(u)=\frac{\int_{D}|\nabla u(x)|^{2} d x}{\left(\int_{D} u(x)^{p} d x\right)^{2 / p}}: u>0, u \in C_{0}^{\infty}(D)\right\}
$$

- $p=1 \longleftrightarrow$ torsional rigidity $4 / P(D)$
- $p=2 \longleftrightarrow$ principal frequency $\lambda(D)$
- What results for $\lambda(D)$ and $P(D)$ extend to $\mathcal{C}_{p}(D)$?
- What can $\mathcal{C}_{p}(D)$ tell us about the common properties of $\lambda(D)$ and $P(D)$?
- cf. recent arXiv posting by Q. Dai, R. He and H. Hu Isoperimetric inequalities and sharp estimates for positive solutions of sublinear elliptic equations.

Euler-Lagrange equation

The Euler-Lagrange equation for the functional $\Phi_{p}(u)=\|\nabla u\|_{2}^{2} /\|u\|_{p}^{2}$ is

$$
\Delta \phi+\Lambda \phi^{p-1}=0,\left.\quad \phi\right|_{\partial D}=0 . \quad \text { Lane-Emden Equation }
$$

Euler-Lagrange equation

The Euler-Lagrange equation for the functional $\Phi_{p}(u)=\|\nabla u\|_{2}^{2} /\|u\|_{p}^{2}$ is

$$
\Delta \phi+\Lambda \phi^{p-1}=0,\left.\quad \phi\right|_{\partial D}=0
$$

Lane-Emden Equation

Pohožaev [Doklady Math. 1965] proves that the minimiser of Φ_{p} is a positive solution of this boundary value problem.

Euler-Lagrange equation

The Euler-Lagrange equation for the functional $\Phi_{p}(u)=\|\nabla u\|_{2}^{2} /\|u\|_{p}^{2}$ is

$$
\Delta \phi+\Lambda \phi^{p-1}=0,\left.\quad \phi\right|_{\partial D}=0
$$

Lane-Emden Equation

Pohožaev [Doklady Math. 1965] proves that the minimiser of Φ_{p} is a positive solution of this boundary value problem.
Unique positive solution for $1 \leq p \leq 2$ (see e.g. Dai, He \& Hu).

Euler-Lagrange equation

The Euler-Lagrange equation for the functional $\Phi_{p}(u)=\|\nabla u\|_{2}^{2} /\|u\|_{p}^{2}$ is

$$
\Delta \phi+\Lambda \phi^{p-1}=0,\left.\quad \phi\right|_{\partial D}=0
$$

Lane-Emden Equation

Pohožaev [Doklady Math. 1965] proves that the minimiser of Φ_{p} is a positive solution of this boundary value problem.
Unique positive solution for $1 \leq p \leq 2$ (see e.g. Dai, He \& Hu).
This agrees with the pde for the torsion function $(p=1)$

$$
\Delta \phi+2=0
$$

and the pde for the first eigenfunction for the Laplacian $(p=2)$

$$
\Delta \phi+\lambda \phi=0
$$

p-torsional rigidity

Let ϕ be a unique positive solution of $\Delta \phi+\Lambda \phi^{p-1}=0, \phi \in C_{0}^{\infty}(D)$. Then

$$
\mathcal{C}_{p}(D)=\Lambda\left(\int_{D} \phi^{p}\right)^{(p-2) / p}
$$

p-torsional rigidity

Let ϕ be a unique positive solution of $\Delta \phi+\Lambda \phi^{p-1}=0, \phi \in C_{0}^{\infty}(D)$. Then

$$
\mathcal{C}_{p}(D)=\Lambda\left(\int_{D} \phi^{p}\right)^{(p-2) / p}
$$

$p=2$: then $\mathcal{C}_{2}(D)=\lambda(D)=$ eigenvalue.

p-torsional rigidity

Let ϕ be a unique positive solution of $\Delta \phi+\Lambda \phi^{p-1}=0, \phi \in C_{0}^{\infty}(D)$. Then

$$
\mathcal{C}_{p}(D)=\Lambda\left(\int_{D} \phi^{p}\right)^{(p-2) / p}
$$

$p=2$: then $\mathcal{C}_{2}(D)=\lambda(D)=$ eigenvalue.
The p-torsional rigidity is defined to be

$$
\mathcal{R}_{p}(D)=\frac{4}{\Lambda}\left(\int_{D} \phi^{p}\right)^{(2-p) / p}
$$

p-torsional rigidity

Let ϕ be a unique positive solution of $\Delta \phi+\Lambda \phi^{p-1}=0, \phi \in C_{0}^{\infty}(D)$. Then

$$
\mathcal{C}_{p}(D)=\Lambda\left(\int_{D} \phi^{p}\right)^{(p-2) / p}
$$

$p=2$: then $\mathcal{C}_{2}(D)=\lambda(D)=$ eigenvalue.
The p-torsional rigidity is defined to be

$$
\mathcal{R}_{p}(D)=\frac{4}{\Lambda}\left(\int_{D} \phi^{p}\right)^{(2-p) / p}
$$

$p=1, \Lambda=2$: then $\mathcal{R}_{1}(D)=2 \int_{D} \phi=$ torsional rigidity.

p-torsional rigidity

Let ϕ be a unique positive solution of $\Delta \phi+\Lambda \phi^{p-1}=0, \phi \in C_{0}^{\infty}(D)$. Then

$$
\mathcal{C}_{p}(D)=\Lambda\left(\int_{D} \phi^{p}\right)^{(p-2) / p}
$$

$p=2$: then $\mathcal{C}_{2}(D)=\lambda(D)=$ eigenvalue.
The p-torsional rigidity is defined to be

$$
\mathcal{R}_{p}(D)=\frac{4}{\Lambda}\left(\int_{D} \phi^{p}\right)^{(2-p) / p}
$$

$p=1, \Lambda=2$: then $\mathcal{R}_{1}(D)=2 \int_{D} \phi=$ torsional rigidity.

$$
\mathcal{R}_{p}(D) \mathcal{C}_{p}(D)=4
$$

Monotonicity

Theorem
If $1 \leq p<q$ then

$$
\operatorname{Vol}(D)^{2 / p} \mathcal{C}_{p}(D)>\operatorname{Vol}(D)^{2 / q} \mathcal{C}_{q}(D)
$$

The inequality in this theorem is always strict.

Monotonicity

Theorem
If $1 \leq p<q$ then

$$
\operatorname{Vol}(D)^{2 / p} \mathcal{C}_{p}(D)>\operatorname{Vol}(D)^{2 / q} \mathcal{C}_{q}(D)
$$

The inequality in this theorem is always strict.
\mathcal{C}_{p} is monotonic in the domain: if $D_{1} \subset D_{2}$ then $\mathcal{C}\left(D_{1}\right) \geq \mathcal{C}\left(D_{2}\right)$

Monotonicity

Theorem
If $1 \leq p<q$ then

$$
\operatorname{Vol}(D)^{2 / p} \mathcal{C}_{p}(D)>\operatorname{Vol}(D)^{2 / q} \mathcal{C}_{q}(D)
$$

The inequality in this theorem is always strict.
\mathcal{C}_{p} is monotonic in the domain: if $D_{1} \subset D_{2}$ then $\mathcal{C}\left(D_{1}\right) \geq \mathcal{C}\left(D_{2}\right)$ Scaling law: $\operatorname{Vol}(r D)^{2 / p} \mathcal{C}_{p}(r D)=r^{n-2} \operatorname{Vol}(D)^{2 / p} \mathcal{C}_{p}(D)$.

Monotonicity

Theorem
If $1 \leq p<q$ then

$$
\operatorname{Vol}(D)^{2 / p} \mathcal{C}_{p}(D)>\operatorname{Vol}(D)^{2 / q} \mathcal{C}_{q}(D)
$$

The inequality in this theorem is always strict.
\mathcal{C}_{p} is monotonic in the domain: if $D_{1} \subset D_{2}$ then $\mathcal{C}\left(D_{1}\right) \geq \mathcal{C}\left(D_{2}\right)$
Scaling law: $\operatorname{Vol}(r D)^{2 / p} \mathcal{C}_{p}(r D)=r^{n-2} \operatorname{Vol}(D)^{2 / p} \mathcal{C}_{p}(D)$.
A special case, $p=1, q=2$, dimension 2 , is the following inequality from Pólya and Szegö:

Monotonicity

Theorem
If $1 \leq p<q$ then

$$
\operatorname{Vol}(D)^{2 / p} \mathcal{C}_{p}(D)>\operatorname{Vol}(D)^{2 / q} \mathcal{C}_{q}(D)
$$

The inequality in this theorem is always strict.
\mathcal{C}_{p} is monotonic in the domain: if $D_{1} \subset D_{2}$ then $\mathcal{C}\left(D_{1}\right) \geq \mathcal{C}\left(D_{2}\right)$
Scaling law: $\operatorname{Vol}(r D)^{2 / p} \mathcal{C}_{p}(r D)=r^{n-2} \operatorname{Vol}(D)^{2 / p} \mathcal{C}_{p}(D)$.
A special case, $p=1, q=2$, dimension 2 , is the following inequality from Pólya and Szegö:

$$
A^{2} \mathcal{C}_{1}(D)>A \mathcal{C}_{2}(D)
$$

Monotonicity

Theorem

If $1 \leq p<q$ then

$$
\operatorname{Vol}(D)^{2 / p} \mathcal{C}_{p}(D)>\operatorname{Vol}(D)^{2 / q} \mathcal{C}_{q}(D)
$$

The inequality in this theorem is always strict.
\mathcal{C}_{p} is monotonic in the domain: if $D_{1} \subset D_{2}$ then $\mathcal{C}\left(D_{1}\right) \geq \mathcal{C}\left(D_{2}\right)$
Scaling law: $\operatorname{Vol}(r D)^{2 / p} \mathcal{C}_{p}(r D)=r^{n-2} \operatorname{Vol}(D)^{2 / p} \mathcal{C}_{p}(D)$.
A special case, $p=1, q=2$, dimension 2 , is the following inequality from Pólya and Szegö:

$$
\begin{aligned}
& A^{2} \mathcal{C}_{1}(D)
\end{aligned}>A \mathcal{C}_{2}(D)
$$

Monotonicity

Theorem

If $1 \leq p<q$ then

$$
\operatorname{Vol}(D)^{2 / p} \mathcal{C}_{p}(D)>\operatorname{Vol}(D)^{2 / q} \mathcal{C}_{q}(D)
$$

The inequality in this theorem is always strict.
\mathcal{C}_{p} is monotonic in the domain: if $D_{1} \subset D_{2}$ then $\mathcal{C}\left(D_{1}\right) \geq \mathcal{C}\left(D_{2}\right)$
Scaling law: $\operatorname{Vol}(r D)^{2 / p} \mathcal{C}_{p}(r D)=r^{n-2} \operatorname{Vol}(D)^{2 / p} \mathcal{C}_{p}(D)$.
A special case, $p=1, q=2$, dimension 2 , is the following inequality from Pólya and Szegö:

$$
\begin{array}{ll}
& A^{2} \mathcal{C}_{1}(D)>A \mathcal{C}_{2}(D) \\
\Longrightarrow & A^{2} \frac{4}{P(D)}>A \lambda(D) \\
\Longrightarrow & \lambda(D) P(D)<4 A
\end{array}
$$

Isoperimetric inequality

Among all regions of given volume the ball has the largest torsional rigidity (St. Venant's Principle, proved by Pólya in 1950's)

Isoperimetric inequality

Among all regions of given volume the ball has the largest torsional rigidity (St. Venant's Principle, proved by Pólya in 1950's) and the smallest Dirichlet eigenvalue (Faber-Krahn Theorem 1920's).

Isoperimetric inequality

Among all regions of given volume the ball has the largest torsional rigidity (St. Venant's Principle, proved by Pólya in 1950's) and the smallest Dirichlet eigenvalue (Faber-Krahn Theorem 1920's).
Let D^{*} be a ball with the same volume as D.

Isoperimetric inequality

Among all regions of given volume the ball has the largest torsional rigidity (St. Venant's Principle, proved by Pólya in 1950's) and the smallest Dirichlet eigenvalue (Faber-Krahn Theorem 1920's).
Let D^{*} be a ball with the same volume as D. Then

$$
\mathcal{C}_{1}(D)=\frac{4}{P(D)} \geq \frac{4}{P\left(D^{*}\right)}=\mathcal{C}_{1}\left(D^{*}\right)
$$

Isoperimetric inequality

Among all regions of given volume the ball has the largest torsional rigidity (St. Venant's Principle, proved by Pólya in 1950's) and the smallest Dirichlet eigenvalue (Faber-Krahn Theorem 1920's).
Let D^{*} be a ball with the same volume as D. Then

$$
\mathcal{C}_{1}(D)=\frac{4}{P(D)} \geq \frac{4}{P\left(D^{*}\right)}=\mathcal{C}_{1}\left(D^{*}\right)
$$

$$
\mathcal{C}_{2}(D)=\lambda(D) \geq \lambda\left(D^{*}\right)=\mathcal{C}_{2}\left(D^{*}\right)
$$

Isoperimetric inequality

Among all regions of given volume the ball has the largest torsional rigidity (St. Venant's Principle, proved by Pólya in 1950's) and the smallest Dirichlet eigenvalue (Faber-Krahn Theorem 1920's).
Let D^{*} be a ball with the same volume as D. Then

$$
\mathcal{C}_{1}(D)=\frac{4}{P(D)} \geq \frac{4}{P\left(D^{*}\right)}=\mathcal{C}_{1}\left(D^{*}\right)
$$

$$
\mathcal{C}_{2}(D)=\lambda(D) \geq \lambda\left(D^{*}\right)=\mathcal{C}_{2}\left(D^{*}\right)
$$

Theorem

$$
\mathcal{C}_{p}(D) \geq \mathcal{C}_{p}\left(D^{*}\right)
$$

for $p \geq 1$, with equality if and only if D is a ball to start with.

Convex regions

Inradius $R(D)=$ supremum radius of all balls contained in D.

Convex regions

Inradius $R(D)=$ supremum radius of all balls contained in D.

- Among all bounded domains D of given inradius, the ball maximizes \mathcal{C}_{p}.

Convex regions

Inradius $R(D)=$ supremum radius of all balls contained in D.

- Among all bounded domains D of given inradius, the ball maximizes \mathcal{C}_{p}.
- Hersch proved $\lambda(D) \geq \frac{\pi^{2}}{4 R(D)^{2}}$ for fundamental frequency

Convex regions

Inradius $R(D)=$ supremum radius of all balls contained in D.

- Among all bounded domains D of given inradius, the ball maximizes \mathcal{C}_{p}.
- Hersch proved $\lambda(D) \geq \frac{\pi^{2}}{4 R(D)^{2}}$ for fundamental frequency
- Sperb proved $u_{M} \leq R(D)^{2}$ for the maximum value of the torsion function

Convex regions

Inradius $R(D)=$ supremum radius of all balls contained in D.

- Among all bounded domains D of given inradius, the ball maximizes \mathcal{C}_{p}.
- Hersch proved $\lambda(D) \geq \frac{\pi^{2}}{4 R(D)^{2}}$ for fundamental frequency
- Sperb proved $u_{M} \leq R(D)^{2}$ for the maximum value of the torsion function
- extremal domain is a strip for both Hersch and Sperb.

Convex regions

Inradius $R(D)=$ supremum radius of all balls contained in D.

- Among all bounded domains D of given inradius, the ball maximizes \mathcal{C}_{p}.
- Hersch proved $\lambda(D) \geq \frac{\pi^{2}}{4 R(D)^{2}}$ for fundamental frequency
- Sperb proved $u_{M} \leq R(D)^{2}$ for the maximum value of the torsion function
- extremal domain is a strip for both Hersch and Sperb.
- Common generalisation: Let ϕ a positive solution of $\Delta \phi+\Lambda \phi^{p-1}=0$ on $D, \phi=0$ on ∂D.

Convex regions

Inradius $R(D)=$ supremum radius of all balls contained in D.

- Among all bounded domains D of given inradius, the ball maximizes \mathcal{C}_{p}.
- Hersch proved $\lambda(D) \geq \frac{\pi^{2}}{4 R(D)^{2}}$ for fundamental frequency
- Sperb proved $u_{M} \leq R(D)^{2}$ for the maximum value of the torsion function
- extremal domain is a strip for both Hersch and Sperb.
- Common generalisation: Let ϕ a positive solution of $\Delta \phi+\Lambda \phi^{p-1}=0$ on $D, \phi=0$ on ∂D. Let $\phi_{M}=\max \{\phi(x): x \in D\}$.

Convex regions

Inradius $R(D)=$ supremum radius of all balls contained in D.

- Among all bounded domains D of given inradius, the ball maximizes \mathcal{C}_{p}.
- Hersch proved $\lambda(D) \geq \frac{\pi^{2}}{4 R(D)^{2}}$ for fundamental frequency
- Sperb proved $u_{M} \leq R(D)^{2}$ for the maximum value of the torsion function
- extremal domain is a strip for both Hersch and Sperb.
- Common generalisation: Let ϕ a positive solution of $\Delta \phi+\Lambda \phi^{p-1}=0$ on $D, \phi=0$ on ∂D. Let $\phi_{M}=\max \{\phi(x): x \in D\}$. Then

$$
\phi_{M}^{2-p} \leq \frac{2 \Lambda}{p A_{p}^{2}} R(D)^{2} \quad \text { where } A_{p}=\int_{0}^{1} \frac{d t}{\sqrt{1-t^{p}}}
$$

Equality in the case of a strip / slab.

Proof that $\phi_{M}^{2-p} \leq$ const $\times R(D)^{2}$

We follow Section 6.2.2 of Sperb's book. Payne's P-function

$$
v(x)=|\nabla \phi(x)|^{2}+\frac{2 \Lambda}{p} \phi^{p}(x),
$$

assumes its maximum at the point where ϕ assumes its maximum.

Proof that $\phi_{M}^{2-p} \leq$ const $\times R(D)^{2}$

We follow Section 6.2.2 of Sperb's book. Payne's P-function

$$
v(x)=|\nabla \phi(x)|^{2}+\frac{2 \Lambda}{p} \phi^{p}(x)
$$

assumes its maximum at the point where ϕ assumes its maximum.

$$
\Longrightarrow \quad|\nabla \phi(x)|^{2}+\frac{2 \Lambda}{p} \phi^{p}(x) \leq \frac{2 \Lambda}{p} \phi_{M}^{p}, \quad x \in D
$$

Proof that $\phi_{M}^{2-p} \leq$ const $\times R(D)^{2}$

We follow Section 6.2.2 of Sperb's book. Payne's P-function

$$
v(x)=|\nabla \phi(x)|^{2}+\frac{2 \Lambda}{p} \phi^{p}(x),
$$

assumes its maximum at the point where ϕ assumes its maximum.

$$
\begin{aligned}
& \Longrightarrow \quad|\nabla \phi(x)|^{2}+\frac{2 \Lambda}{p} \phi^{p}(x) \leq \frac{2 \Lambda}{p} \phi_{M}^{p}, \quad x \in D \\
& \Longrightarrow \quad|\nabla \phi(x)| \leq \sqrt{\frac{2 \Lambda}{p}} \sqrt{\phi_{M}^{p}-\phi^{p}(x)}, \quad x \in D .
\end{aligned}
$$

Proof that $\phi_{M}^{2-p} \leq$ const $\times R(D)^{2}$

We follow Section 6.2.2 of Sperb's book. Payne's P-function

$$
v(x)=|\nabla \phi(x)|^{2}+\frac{2 \Lambda}{p} \phi^{p}(x)
$$

assumes its maximum at the point where ϕ assumes its maximum.

$$
\begin{array}{ll}
\Longrightarrow & |\nabla \phi(x)|^{2}+\frac{2 \Lambda}{p} \phi^{p}(x) \leq \frac{2 \Lambda}{p} \phi_{M}^{p},
\end{array} \quad x \in D .
$$

Let $\delta_{D}(P)$ be the distance from the point P where ϕ assumes its maximum to the boundary of D and integrate along a line segment from P that terminates at a point on ∂D closest to P.

Proof that $\phi_{M}^{2-p} \leq$ const $\times R(D)^{2}$

We follow Section 6.2.2 of Sperb's book. Payne's P-function

$$
v(x)=|\nabla \phi(x)|^{2}+\frac{2 \Lambda}{p} \phi^{p}(x),
$$

assumes its maximum at the point where ϕ assumes its maximum.

$$
\begin{aligned}
& \Longrightarrow \quad|\nabla \phi(x)|^{2}+\frac{2 \Lambda}{p} \phi^{p}(x) \leq \frac{2 \Lambda}{p} \phi_{M}^{p}, \quad x \in D \\
& \Longrightarrow \quad|\nabla \phi(x)| \leq \sqrt{\frac{2 \Lambda}{p}} \sqrt{\phi_{M}^{p}-\phi^{p}(x)}, \quad x \in D .
\end{aligned}
$$

Let $\delta_{D}(P)$ be the distance from the point P where ϕ assumes its maximum to the boundary of D and integrate along a line segment from P that terminates at a point on ∂D closest to P. Then

$$
R(D) \geq \delta_{D}(P) \geq \sqrt{\frac{p}{2 \Lambda}} \phi_{M}^{(2-p) / 2} A_{p} \quad \text { where } A_{p}=\int_{0}^{1} \frac{d t}{\sqrt{1-t^{p}}}
$$

Remarks

- We envision these interpolation results as the first step in a programme to use estimates of $\lambda(D)$ and the continuity method to get estimates of $P(D)$ (or vice versa).

Remarks

- We envision these interpolation results as the first step in a programme to use estimates of $\lambda(D)$ and the continuity method to get estimates of $P(D)$ (or vice versa).
- The PDE $\Delta \phi+\Lambda \phi^{p-1}$ is well-studied and is still the topic of much current research.

Remarks

- We envision these interpolation results as the first step in a programme to use estimates of $\lambda(D)$ and the continuity method to get estimates of $P(D)$ (or vice versa).
- The PDE $\Delta \phi+\Lambda \phi^{p-1}$ is well-studied and is still the topic of much current research.
- One should not expect to attain the infimum of the function Φ_{p} for the critical exponent $p=\frac{2 n}{n-2}$. This blow-up phenomenon reflects the loss of compactness in the Sobolev embedding.

Remarks

- We envision these interpolation results as the first step in a programme to use estimates of $\lambda(D)$ and the continuity method to get estimates of $P(D)$ (or vice versa).
- The PDE $\Delta \phi+\Lambda \phi^{p-1}$ is well-studied and is still the topic of much current research.
- One should not expect to attain the infimum of the function Φ_{p} for the critical exponent $p=\frac{2 n}{n-2}$. This blow-up phenomenon reflects the loss of compactness in the Sobolev embedding.
- Thanks for listening!

