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Let M be an n-dimensional Riemannian manifold (of class C1) such that

Hn(M) < ∞.

Here, Hn is the n-dimensional Hausdorff measure on M , namely, the
volume measure on M induced by its Riemannian metric.

Problem: estimates for eigenfunctions of the Laplacian on M .
Weak formulation: a function u ∈ W 1,2(M) is an eigenfunction of the
Laplacian associated with the eigenvalue γ if∫

M
∇u · ∇Φ dHn(x) = γ

∫
M

uΦ dHn(x) (1)

for every Φ ∈ W 1,2(M).
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If M is complete, then (1) is equivalent to

−∆u = γu on M . (2)

If M is an open subset of a Riemannian manifold, in particular of IRn, then
(1) is the weak formulation of the Neumann problem−∆u = γu on M

∂u

∂n
= 0 on ∂M

(3)
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Case M compact.
The eigenvalue problem for the Laplacian has been extensively studied.

By the classical Rellich’s Lemma , the compactness of the embedding

W 1,2(M) → L2(M)

is equivalent to the discreteness of the spectrum of the Laplacian on M .

Bounds for eigenfunctions in Lq(M), q > 2, and L∞(M) follow via local
bounds, owing to the compactness of M .
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Pb.: noncompact M .

Much less seems to be known.

Not even the existence of eigenfunctions is guaranteed.

Major problem: the embedding W 1,2(M) → L2(M) need not be compact.
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Example 1.
M = Ω

an open subset of IRn endowed with the Eulcidean metric.
The eigenvalue problem (2) turns into the Neumann problem−∆u = γu in Ω

∂u

∂n
= 0 on ∂Ω .

The point here is that no regularity on ∂Ω is (a priori) assumed.
Contributions in [B.Simon], [Burenkov-Davies].
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Example 2.
A noncompact manifold of revolution in IRn,

M = {(r, ω) : r ∈ [0,∞), ω ∈ Sn−1},

with metric (in polar coordinates) given by

ds2 = dr2 + ϕ(r)2dω2 . (4)

Here, dω2 stands for the standard metric on Sn−1, and ϕ : [0, L) → [0,∞)
is a smooth function such that ϕ(r) > 0 for r ∈ (0, L), and

ϕ(0) = 0 , and ϕ′(0) = 1 .
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M

Figure: A manifold of revolution
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Example 3.
Manifolds of Courant-Hilbert type.

M contains a sequence of mushroom-shaped submanifolds .
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M
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Figure: A manifold with a family of clustering submanifolds

A. Cianchi (Univ. Firenze) Eigenfunctions of the Laplacian Carthage, May 2010 11 / 46



10

Qualitative and quantitative properties of eigenvalues and eigenfunctions
depend on the geometry of M .

A possible description of the geometry of the manifold M is via the

isoperimetric function λM of M .

The use of isoperimetric inequalities in the study of Dirichlet eigenvalue
problems on domains of IRn is classical: [Faber, 1923], [Krahn, 1925],
[Payne-Pólya-Weiberger, 1956], [Chiti, 1983], [Ashbaugh-Benguria, 1992],
[Nadirashvili, 1995] ...

An alternate approach, exploiting the

isocapacitary function νM of M,

is more effective in dealing with manifolds having an irregular geometry (in
particular, Neumann eigenvalue problems on irregular domains in IRn).
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Classical isoperimetric inequality [De Giorgi]

Hn−1(∂∗E) ≥ nω1/n
n |E|1/n′ ∀E ⊂ IRn .

Here:
• ∂∗E stands for the essential boundary of E,
• |E| = Hn(E), the Lebesgue measure of E,
• Hn−1 is the (n− 1)-dimensional Hausdorff measure (the surface area).

In other words,

the ball has the least surface area among sets of fixed volume.
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In general the isoperimetric function λM : [0,Hn(M)/2] → [0,∞) of M
(introduced by V.G.Maz’ya) is defined as

λM (s) = inf{Hn−1(∂∗E) : s ≤ Hn(E) ≤ Hn(M)/2} , (5)

for s ∈ [0,Hn(M)/2].

Isoperimetric inequality on M :

Hn−1(∂∗E) ≥ λM (Hn(E)) ∀E ⊂ M,Hn(E) ≤ Hn(M)/2.
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The geometry of M is related to λM , and, in particular, to its asymptotic
behavior at 0. For instance, if M is compact, then

λM (s) ≈ s1/n′ as s → 0.

Here, f ≈ g means that ∃ c, k > 0 such that

cg(cs) ≤ f(s) ≤ kg(ks).

Moreover, n′ =
n

n− 1
.
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Approach by isocapacitary inequalities.
Standard capacity of E ⊂ M :

C(E) = inf

{ ∫
M
|∇u|2 dx : u ∈ W 1,2(M),

”u ≥ 1” in E, and u has compact support

}
.

Capacity of a condenser (E;G), E ⊂ G ⊂ M :

C(E;G) = inf

{ ∫
M
|∇u|2 dx : u ∈ W 1,2(M),

”u ≥ 1” in E ”u ≤ 0” in M \G

}
.
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Isocapacitary function (introduced by V.G.Maz’ya)

νM : [0,Hn(M)/2] → [0,∞)

νM (s) = inf{C(E,G) : E ⊂ G ⊂ M , s ≤ Hn(E) and Hn(G) ≤ Hn(M)/2}

for s ∈ [0,Hn(M)/2].

Isocapacitary inequality:

C(E,G) ≥ νM (Hn(E)) ∀ E ⊂ G ⊂ M , Hn(G) ≤ Hn(M)/2.

If M is compact and n ≥ 3, then

νM (s) ≈ s
n−2

n as s → 0.
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The isoperimetric function and the isocapacitary function of a manifold M
are related by

1

νM (s)
≤

∫ Hn(M)/2

s

dr

λM (r)2
for s ∈ (0,Hn(M)/2). (6)

A reverse estimate does not hold in general.
Roughly speaking, a reverse estimate only holds when the geometry of M
is sufficiently regular.
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Both the conditions in terms of νM , and those in terms of λM , for
eigenfunction estimates in Lq(M) or L∞(M) to be presented are sharp in
the class of manifolds M with prescribed asymptotic behavior of νM and
λM at 0.

Each one of these approaches has its own advantages.

The isoperimetric function λM has a transparent geometric character, and
it is usually easier to investigate.

The isocapacitary function νM is in a sense more appropriate: it not only
implies the results involving λM , but leads to finer conclusions in general.
Typically, this is the case when manifolds with complicated geometric
configurations are taken into account.
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Estimates for eigenfunctions.
If u is an eigenfunction of the Laplacian, then, by definition,
u ∈ W 1,2(M). Hence, trivially, u ∈ L2(M).

Problem: given q ∈ (2,∞], find conditions on M ensuring that any
eigenfunction u of the Laplacian on M belongs to Lq(M).
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Theorem 1: Lq bounds for eigenfunctions

Assume that
lim
s→0

s

νM (s)
= 0 . (7)

Then for any q ∈ (2,∞) there exists a constant C such that

‖u‖Lq(M) ≤ C‖u‖L2(M) (8)

for every eigenfunction u of the Laplacian on M .
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The assumption

lim
s→0

s

νM (s)
= 0 (9)

is essentially minimal in Theorem 1.

Theorem 2: Sharpness of condition (9)

For any n ≥ 2 and q ∈ (2,∞], there exists an n-dimensional Riemannian
manifold M such that

νM (s) ≈ s near 0, (10)

and the Laplacian on M has an eigenfunction u /∈ Lq(M).
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Conditions in terms of the isoperimetric function for Lq bounds for
eigenfunctions can be derived via Theorem 2.

Corollary 2

Assume that
lim
s→0

s

λM (s)
= 0 . (11)

Then for any q ∈ (2,∞) there exists a constant C such that

‖u‖Lq(M) ≤ C‖u‖L2(M)

for every eigenfunction u of the Laplacian on M .

Assumption (12) is minimal in the same sense as the analogous
assumption in terms of νM .
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Estimate for the growth of constant in the Lq(M) bound for
eigenfunctions in terms of the eigenvalue.

Proposition

Assume that
lim
s→0

s

νM (s)
= 0 . (12)

Define
Θ(s) = sup

r∈(0,s)

r

νM (r)
for s ∈ (0,Hn(M)/2].

Then ‖u‖Lq(M) ≤ C‖u‖L2(M) for any q ∈ (2,∞) and for every eigenfunc-
tion u of the Laplacian on M associated with the eigenvalue γ, where

C(νM , q, γ) =
C1(

Θ−1(C2/γ)
) 1

2
− 1

q

,

and C1 = C1(q,Hn(M)) and C2 = C2(q,Hn(M)).
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Example.
Assume that there exists β ∈ [(n− 2)/n, 1) such that

νM (s) ≥ Csβ .

Then there exists a constant C = C(q,Hn(M)) such that

‖u‖Lq(M) ≤ Cγ
q−2

2q(1−β) ‖u‖L2(M)

for every eigenfunction u of the Laplacian on M associated with the
eigenvalue γ.
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Consider now the case when q = ∞, namely the problem of the
boundedness of the eigenfunctions.

Theorem 3: boundedness of eigenfunctions

Assume that ∫
0

ds

νM (s)
< ∞ . (13)

Then there exists a constant C such that

‖u‖L∞(M) ≤ C‖u‖L2(M) (14)

for every eigenfunction u of the Laplacian on M .
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The condition ∫
0

ds

νM (s)
< ∞ (15)

is essentially sharp in Theorem 4.
This is the content of the next result.
Recall that f ∈ ∆2 near 0 if there exist constants c and s0 such that

f(2s) ≤ cf(s) if 0 < s ≤ s0. (16)
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Theorem 4: sharpness of condition (15)

Let ν be a non-decreasing function, vanishing only at 0, such that

lim
s→0

s

ν(s)
= 0 , (17)

but ∫
0

ds

ν(s)
= ∞ . (18)
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Assume in addition that ν ∈ ∆2 near 0 and

ν(s)

s
n−2

n

is equivalent to a non-decreasing function near 0, (19)

for some n ≥ 3. Then, there exists an n-dimensional Riemannian manifold
M fulfilling

νM (s) ≈ ν(s) as s → 0, (20)

and such that the Laplacian on M has an unbounded eigenfunction.

Assumption (19) is consistent with the fact that νM (s) ≈ s
n−2

n near 0 if
the geometry of M is nice (e.g. M compact), and that νM (s) → 0 faster

than s
n−2

n otherwise.
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Owing to the inequality

1

νM (s)
≤

∫ Hn(M)/2

s

dr

λM (r)2
for s ∈ (0,Hn(M)/2),

Theorem 4 has the following corollary in terms of isoperimetric
inequalities.
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Corollary 3

Assume that ∫
0

s

λM (s)2
ds < ∞ . (21)

Then there exists a constant C such that

‖u‖L∞(M) ≤ C‖u‖L2(M) (22)

for every eigenfunction u of the Laplacian on M .

Assumption (21) is sharp in the same sense as the analogous assumption
in terms of νM .
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Estimate for the growth of constant in the L∞(M) bound for
eigenfunctions in terms of the eigenvalue.

Proposition

Assume that ∫
0

ds

νM (s)
< ∞.

Define

Ξ(s) =

∫ s

0

dr

νM (r)
for s ∈ (0,Hn(M)/2].

Then ‖u‖L∞(M) ≤ C‖u‖L2(M) for every eigenfunction u of the Laplacian
on M associated with the eigenvalue γ, where

C(νM , γ) =
C1(

Ξ−1(C2/γ)
) 1

2

,

and C1 and C2 are absolute constants.
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Example.
Assume that there exists β ∈ [(n− 2)/n, 1) such that

νM (s) ≥ Csβ .

Then there exists an absolute constant C such that

‖u‖L∞(M) ≤ Cγ
1

2(1−β) ‖u‖L2(M)

for every eigenfunction u of the Laplacian on M associated with the
eigenvalue γ.
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Pb.: Discreteness of the spectrum of the Laplacian on M .
Consider the semi-definite self-adjoint Laplace operator ∆ on the Hilbert
space L2(M) associated with the bilinear form
a : W 1,2(M)×W 1,2(M) → IR defined as

a(u, v) =

∫
M
∇u · ∇v dHn(x) (23)

for u, v ∈ W 1,2(M).
• When C∞

0 (M) = W 1,2(M), the operator ∆ agrees with the Friedrichs
extension of the classical Laplace operator. This is the case, for instance,
if M is complete, and, in particular, if M is compact.
• When M is an open subset of IRn, or, more generally, of a Riemannian
manifold, then ∆ corresponds to the Neumann Laplacian on M .
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A necessary and sufficient condition for the discreteness of the spectrum of
∆ can be given in terms of the isocapacitary function of M .

Theorem 5: Discreteness of the spectrum of ∆

The spectrum of the Laplacian on M is discrete if and only if

lim
s→0

s

νM (s)
= 0 . (24)

Condition (24) agrees with that ensuring Lq(M) bounds for
eigenfunctions.
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The proof of Theorem 5 relies upon the following characterization of the
compactness of the embedding

W 1,2(M) → L2(M). (25)

Theorem 6: Compactness of the embedding (25)

The embedding
W 1,2(M) → L2(M)

is compact if and only if

lim
s→0

s

νM (s)
= 0 .
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As a consequence of Theorem 5, the following sufficient condition in terms
of the isoperimetric function of M holds.

Corollary 4

Assume that
lim
s→0

s

λM (s)
= 0 .

Then the spectrum of the Laplacian on M is discrete.
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Example 4
Manifold of revolution, with metric

ds2 = dr2 + ϕ(r)2dω2 (26)

and ϕ : [0,∞) → [0,∞) such that

ϕ(r) = e−rα
for large r. (27)
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M

Figure: A manifold of revolution

The larger is α, the better is M .
One can show that

λM (s) ≈ s
(
log(1/s))

)1−1/α
near 0,

and

νM (s) ≈
( ∫ Hn(M)/2

s

dr

λM (r)2

)−1

≈ s
(
log(1/s)

)2−2/α
near 0.
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The criteria involving λM tell us that all eigenfunctions of the Laplacian
on M belong to Lq(M) for q < ∞ if

α > 1, (28)

and to L∞(M) if
α > 2. (29)

The same conclusions follow via the criteria involving νM .
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Moreover, if α > 1, then there exist constants C1 = C1(q) and
C2 = C2(q) such that

‖u‖Lq(M) ≤ C1e
C2γ

α
2α−2 ‖u‖L2(M)

for any eigenfunction u of the Laplacian associated with the eigenvalue γ.

If α > 2, then there exist absolute constants C1 and C2 such that

‖u‖L∞(M) ≤ C1e
C2γ

α
α−2 ‖u‖L2(M)

for any eigenfunction u associated with γ.
The spectrum of the Laplacian on M is discrete if and only if

α > 1

.
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Example 5
Manifolds with clustering submanifolds.

M

( )FLAT N
k

N
k+1

2
-k+1

M O

Figure: A manifold with a family of clustering submanifolds

A. Cianchi (Univ. Firenze) Eigenfunctions of the Laplacian Carthage, May 2010 42 / 46



38

Q

Ne Q U UP Re e=

Re

( )FLATPe

x

z

y
0

1

-1

f (r )0

e
2

f(r e) e- =

f(r e) e- =

Figure: An auxiliary submanifold

In the sequence of mushrooms, the width of the heads and the length of
the necks decay like 2−k, the width of the neck decays like σ(2−k) as
k →∞, where

lim
s→0

σ(s)

s
= 0.
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Assume, for instance, that b > 1 and

σ(s) = sb for s > 0.

Then the criterion involving λM ensures that all eigenfunctions of the
Laplacian on M are bounded provided that

b < 2.

The criterion involving νM yields the boundedness of eigenfunctions
under the weaker assumption that

b < 3

.
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By the use of νM we also get that if b < 3, then there exists a constant
C = C(q) such that

‖u‖Lq(M) ≤ Cγ
q−2

q(3−b) ‖u‖L2(M)

for every q ∈ (2,∞] and for any eigenfunction u of the Laplacian
associated with the eigenvalue γ.
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Moreover, the characterization via νM implies that the spectrum of the
Laplacian on M is discrete if and only if

b < 3

.
The use of λM tells us that spectrum of the Laplacian is discrete for

b < 2

only.
This example shows that the use of the isocapacitary function can actually
lead to sharper conclusions than those obtained via the isoperimetric
function.
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