ISOCAPACITARY VS. ISOPERIMETRIC METHODS IN EIGENVALUE PROBLEMS FOR THE LAPLACIAN ON MANIFOLDS

Andrea Cianchi

Università di Firenze

Carthage, May 2010

1 / 46

A.C. & V.Maz'ya Bounds for eigenfunctions of the Laplacian on noncompact Riemannian manifolds, preprint.

A.C. & V.Maz'ya On the discreteness of the spectrum of noncompact Riemannian manifolds, preprint Let M be an n-dimensional Riemannian manifold (of class C^1) such that $\mathcal{H}^n(M) < \infty$.

Here, \mathcal{H}^n is the *n*-dimensional Hausdorff measure on M, namely, the volume measure on M induced by its Riemannian metric.

Problem: estimates for eigenfunctions of the Laplacian on M. Weak formulation: a function $u \in W^{1,2}(M)$ is an eigenfunction of the Laplacian associated with the eigenvalue γ if

$$\int_{M} \nabla u \cdot \nabla \Phi \, d\mathcal{H}^{n}(x) = \gamma \int_{M} u \Phi \, d\mathcal{H}^{n}(x) \tag{1}$$

for every $\Phi \in W^{1,2}(M)$.

If M is complete, then (1) is equivalent to

$$-\Delta u = \gamma u \qquad \text{on } M. \tag{2}$$

If M is an open subset of a Riemannian manifold, in particular of \mathbb{R}^n , then (1) is the weak formulation of the Neumann problem

$$\begin{cases} -\Delta u = \gamma u & \text{on } M\\ \frac{\partial u}{\partial \mathbf{n}} = 0 & \text{on } \partial M \end{cases}$$
(3)

Case M compact.

The eigenvalue problem for the Laplacian has been extensively studied.

By the classical Rellich's Lemma , the compactness of the embedding

 $W^{1,2}(M) \to L^2(M)$

is equivalent to the discreteness of the spectrum of the Laplacian on M.

Bounds for eigenfunctions in $L^{q}(M)$, q > 2, and $L^{\infty}(M)$ follow via local bounds, owing to the compactness of M.

Pb.: noncompact M.

Much less seems to be known.

Not even the existence of eigenfunctions is guaranteed.

Major problem: the embedding $W^{1,2}(M) \to L^2(M)$ need not be compact.

$M=\Omega$

an open subset of \mathbb{R}^n endowed with the Eulcidean metric. The eigenvalue problem (2) turns into the Neumann problem

$$\begin{cases} -\Delta u = \gamma u & \text{in } \Omega \\ \frac{\partial u}{\partial \mathbf{n}} = 0 & \text{on } \partial \Omega \,. \end{cases}$$

The point here is that no regularity on $\partial \Omega$ is (a priori) assumed. Contributions in [B.Simon], [Burenkov-Davies].

7 / 46

Example 2.

A noncompact manifold of revolution in \mathbb{R}^n ,

$$M=\{(r,\omega):r\in [0,\infty),\omega\in \mathbb{S}^{n-1}\},$$

with metric (in polar coordinates) given by

$$ds^2 = dr^2 + \varphi(r)^2 d\omega^2 \,. \tag{4}$$

Here, $d\omega^2$ stands for the standard metric on \mathbb{S}^{n-1} , and $\varphi : [0, L) \to [0, \infty)$ is a smooth function such that $\varphi(r) > 0$ for $r \in (0, L)$, and

$$arphi(\mathsf{0})=\mathsf{0}\,,\qquad ext{and}\qquad arphi'(\mathsf{0})=1\,.$$

FIGURE: A manifold of revolution

Example 3. Manifolds of Courant-Hilbert type.

 ${\it M}$ contains a sequence of mushroom-shaped submanifolds .

A. CIANCHI (UNIV. FIRENZE)

٨

Carthage, May 2010 11 / 46

Qualitative and quantitative properties of eigenvalues and eigenfunctions depend on the geometry of M.

A possible description of the geometry of the manifold ${\cal M}$ is via the

isoperimetric function λ_M of M.

The use of isoperimetric inequalities in the study of Dirichlet eigenvalue problems on domains of \mathbb{R}^n is classical: [Faber, 1923], [Krahn, 1925], [Payne-Pólya-Weiberger, 1956], [Chiti, 1983], [Ashbaugh-Benguria, 1992], [Nadirashvili, 1995] ...

An alternate approach, exploiting the

isocapacitary function ν_M of M,

is more effective in dealing with manifolds having an irregular geometry (in particular, Neumann eigenvalue problems on irregular domains in \mathbb{R}^n).

Classical isoperimetric inequality [De Giorgi]

$$\mathcal{H}^{n-1}(\partial^* E) \ge n\omega_n^{1/n} |E|^{1/n'} \qquad \forall E \subset \mathbb{R}^n.$$

Here:

- $\partial^* E$ stands for the essential boundary of E,
- $|E| = \mathcal{H}^n(E)$, the Lebesgue measure of E,
- \mathcal{H}^{n-1} is the (n-1)-dimensional Hausdorff measure (the surface area).

In other words,

the ball has the least surface area among sets of fixed volume.

In general the isoperimetric function $\lambda_M : [0, \mathcal{H}^n(M)/2] \to [0, \infty)$ of M (introduced by V.G.Maz'ya) is defined as

 $\lambda_M(s) = \inf\{\mathcal{H}^{n-1}(\partial^* E) : s \le \mathcal{H}^n(E) \le \mathcal{H}^n(M)/2\},$ (5)

for $s \in [0, \mathcal{H}^n(M)/2]$.

Isoperimetric inequality on M:

 $\mathcal{H}^{n-1}(\partial^* E) \ge \lambda_M(\mathcal{H}^n(E)) \quad \forall E \subset M, \mathcal{H}^n(E) \le \mathcal{H}^n(M)/2.$

The geometry of M is related to λ_M , and, in particular, to its asymptotic behavior at 0. For instance, if M is compact, then

 $\lambda_M(s) pprox s^{1/n'}$ as s o 0.

Here, $f \approx g$ means that $\exists c, k > 0$ such that

 $cg(cs) \leq f(s) \leq kg(ks).$

Moreover, $n' = \frac{n}{n-1}$.

Approach by isocapacitary inequalities. Standard capacity of $E \subset M$:

$$C(E) = \inf \left\{ \int_{M} |\nabla u|^2 \, dx : u \in W^{1,2}(M), \\ "u \ge 1" \text{ in } E, \text{ and } u \text{ has compact support} \right\}.$$

Capacity of a condenser (E; G), $E \subset G \subset M$:

$$C(E;G) = \inf \left\{ \int_M |\nabla u|^2 \, dx : u \in W^{1,2}(M), \\ "u \ge 1" \quad \text{in } E \quad "u \le 0" \quad \text{in } M \setminus G \right\}.$$

16 / 46

Isocapacitary function (introduced by V.G.Maz'ya)

 $u_M: [\mathbf{0}, \mathcal{H}^n(M)/2] \to [\mathbf{0}, \infty)$

 $u_M(s) = \inf\{C(E,G) : E \subset G \subset M, s \leq \mathcal{H}^n(E) \text{ and } \mathcal{H}^n(G) \leq \mathcal{H}^n(M)/2\}$ for $s \in [0, \mathcal{H}^n(M)/2].$

Isocapacitary inequality:

 $C(E,G) \ge \nu_M(\mathcal{H}^n(E)) \quad \forall \ E \subset G \subset M, \ \mathcal{H}^n(G) \le \mathcal{H}^n(M)/2.$

If M is compact and $n \ge 3$, then

$$u_M(s) \approx s^{\frac{n-2}{n}} \quad \text{as } s \to 0.$$

The isoperimetric function and the isocapacitary function of a manifold ${\cal M}$ are related by

$$\frac{1}{\nu_M(s)} \le \int_s^{\mathcal{H}^n(M)/2} \frac{dr}{\lambda_M(r)^2} \quad \text{for } s \in (0, \mathcal{H}^n(M)/2).$$
 (6)

A reverse estimate does not hold in general.

Roughly speaking, a reverse estimate only holds when the geometry of M is sufficiently regular.

Both the conditions in terms of ν_M , and those in terms of λ_M , for eigenfunction estimates in $L^q(M)$ or $L^{\infty}(M)$ to be presented are sharp in the class of manifolds M with prescribed asymptotic behavior of ν_M and λ_M at 0.

Each one of these approaches has its own advantages.

The isoperimetric function λ_M has a transparent geometric character, and it is usually easier to investigate.

The isocapacitary function ν_M is in a sense more appropriate: it not only implies the results involving λ_M , but leads to finer conclusions in general. Typically, this is the case when manifolds with complicated geometric configurations are taken into account.

Estimates for eigenfunctions.

If u is an eigenfunction of the Laplacian, then, by definition, $u \in W^{1,2}(M)$. Hence, trivially, $u \in L^2(M)$.

Problem: given $q \in (2, \infty]$, find conditions on M ensuring that any eigenfunction u of the Laplacian on M belongs to $L^{q}(M)$.

Theorem 1: L^q bounds for eigenfunctions

Assume that

$$\lim_{s \to 0} \frac{s}{\nu_M(s)} = 0.$$
⁽⁷⁾

Then for any $q \in (2,\infty)$ there exists a constant C such that

$$\|u\|_{L^q(M)} \le C \|u\|_{L^2(M)} \tag{8}$$

for every eigenfunction u of the Laplacian on M.

The assumption

$$\lim_{s \to 0} \frac{s}{\nu_M(s)} = 0 \tag{9}$$

is essentially minimal in Theorem 1.

Theorem 2: Sharpness of condition (9) For any $n \ge 2$ and $q \in (2, \infty]$, there exists an *n*-dimensional Riemannian manifold M such that $\nu_M(s) \approx s$ near 0, (10)

and the Laplacian on M has an eigenfunction $u \notin L^q(M)$.

Conditions in terms of the isoperimetric function for L^q bounds for eigenfunctions can be derived via Theorem 2.

Corollary 2

Assume that

$$\lim_{s \to 0} \frac{s}{\lambda_M(s)} = 0.$$
 (11)

Then for any $q \in (2, \infty)$ there exists a constant C such that

$$||u||_{L^q(M)} \le C ||u||_{L^2(M)}$$

for every eigenfunction u of the Laplacian on M.

Assumption (12) is minimal in the same sense as the analogous assumption in terms of ν_M .

Estimate for the growth of constant in the $L^q(M)$ bound for eigenfunctions in terms of the eigenvalue.

Proposition

Assume that

$$\lim_{s \to 0} \frac{s}{\nu_M(s)} = 0.$$
(12)

Define

$$\Theta(s) = \sup_{r \in (0,s)} rac{r}{
u_M(r)} \qquad \quad ext{for } s \in (0,\mathcal{H}^n(M)/2].$$

Then $||u||_{L^q(M)} \leq C ||u||_{L^2(M)}$ for any $q \in (2, \infty)$ and for every eigenfunction u of the Laplacian on M associated with the eigenvalue γ , where

$$C(\nu_M, q, \gamma) = \frac{C_1}{(\Theta^{-1}(C_2/\gamma))^{\frac{1}{2}-\frac{1}{q}}},$$

and $C_1 = C_1(q, \mathcal{H}^n(M))$ and $C_2 = C_2(q, \mathcal{H}^n(M))$.

Example.

Assume that there exists $\beta \in [(n-2)/n, 1)$ such that

 $\nu_M(s) \ge C s^{\beta}.$

Then there exists a constant $C = C(q, \mathcal{H}^n(M))$ such that

$$\|u\|_{L^q(M)} \le C\gamma^{\frac{q-2}{2q(1-\beta)}} \|u\|_{L^2(M)}$$

for every eigenfunction u of the Laplacian on M associated with the eigenvalue $\gamma.$

Consider now the case when $q = \infty$, namely the problem of the boundedness of the eigenfunctions.

Theorem 3:	boundedness of eigenfunctions	
Assume that	$\int_0 rac{ds}{ u_M(s)} < \infty$.	(13)
Then there	exists a constant C such that	
	$ u _{L^{\infty}(M)} \le C u _{L^{2}(M)}$	(14)
· ·		

for every eigenfunction u of the Laplacian on M.

26 / 46

The condition

$$\int_{0} \frac{ds}{\nu_M(s)} < \infty \tag{15}$$

is essentially sharp in Theorem 4. This is the content of the next result. Recall that $f \in \Delta_2$ near 0 if there exist constants c and s_0 such that

J

$$f(2s) \le cf(s) \qquad \text{if } 0 < s \le s_0. \tag{16}$$

Theorem 4: sharpness of condition (15)

Let ν be a non-decreasing function, vanishing only at 0, such that

$$\lim_{s \to 0} \frac{s}{\nu(s)} = 0, \qquad (17)$$

but

$$\int_0 \frac{ds}{\nu(s)} = \infty \,. \tag{18}$$

Assume in addition that $\nu \in \Delta_2$ near 0 and

$$\frac{\nu(s)}{s^{\frac{n-2}{n}}}$$
 is equivalent to a non-decreasing function near 0, (19)

for some $n \geq$ 3. Then, there exists an n-dimensional Riemannian manifold M fulfilling

$$u_M(s) \approx \nu(s) \quad \text{as } s \to 0,$$
(20)

and such that the Laplacian on M has an unbounded eigenfunction.

Assumption (19) is consistent with the fact that $\nu_M(s) \approx s^{\frac{n-2}{n}}$ near 0 if the geometry of M is nice (e.g. M compact), and that $\nu_M(s) \to 0$ faster than $s^{\frac{n-2}{n}}$ otherwise.

Owing to the inequality

$$rac{1}{
u_M(s)} \leq \int_s^{\mathcal{H}^n(M)/2} rac{dr}{\lambda_M(r)^2} \qquad ext{for } s \in (0,\mathcal{H}^n(M)/2),$$

Theorem 4 has the following corollary in terms of isoperimetric inequalities.

Corollary 3

Assume that

$$\int_{0} \frac{s}{\lambda_M(s)^2} \, ds < \infty \,. \tag{21}$$

Then there exists a constant C such that

$$\|u\|_{L^{\infty}(M)} \le C \|u\|_{L^{2}(M)}$$
(22)

for every eigenfunction u of the Laplacian on M.

Assumption (21) is sharp in the same sense as the analogous assumption in terms of ν_M .

Estimate for the growth of constant in the $L^{\infty}(M)$ bound for eigenfunctions in terms of the eigenvalue.

Proposition

Assume that

$$\int_{\mathsf{O}} \frac{ds}{\nu_M(s)} < \infty.$$

Define

$$\Xi(s) = \int_0^s rac{dr}{
u_M(r)} \qquad ext{ for } s \in (0, \mathcal{H}^n(M)/2].$$

Then $||u||_{L^{\infty}(M)} \leq C ||u||_{L^{2}(M)}$ for every eigenfunction u of the Laplacian on M associated with the eigenvalue γ , where

$$C(\nu_M, \gamma) = \frac{C_1}{\left(\Xi^{-1}(C_2/\gamma)\right)^{\frac{1}{2}}},$$

and C_1 and C_2 are absolute constants.

Example.

Assume that there exists $\beta \in [(n-2)/n, 1)$ such that

 $\nu_M(s) \ge C s^{\beta}.$

Then there exists an absolute constant C such that

$$||u||_{L^{\infty}(M)} \le C\gamma^{\frac{1}{2(1-\beta)}} ||u||_{L^{2}(M)}$$

for every eigenfunction u of the Laplacian on M associated with the eigenvalue $\gamma.$

Pb.: Discreteness of the spectrum of the Laplacian on M. Consider the semi-definite self-adjoint Laplace operator Δ on the Hilbert space $L^2(M)$ associated with the bilinear form $a: W^{1,2}(M) \times W^{1,2}(M) \to \mathbb{R}$ defined as

$$a(u,v) = \int_{M} \nabla u \cdot \nabla v \, d\mathcal{H}^{n}(x) \tag{23}$$

for $u, v \in W^{1,2}(M)$.

• When $\overline{C_0^{\infty}(M)} = W^{1,2}(M)$, the operator Δ agrees with the Friedrichs extension of the classical Laplace operator. This is the case, for instance, if M is complete, and, in particular, if M is compact.

• When M is an open subset of \mathbb{R}^n , or, more generally, of a Riemannian manifold, then Δ corresponds to the Neumann Laplacian on M.

A necessary and sufficient condition for the discreteness of the spectrum of Δ can be given in terms of the isocapacitary function of M.

Theorem 5: Discreteness of the spectrum of Δ The spectrum of the Laplacian on M is discrete if and only if

$$\lim_{s\to 0}\frac{s}{\nu_M(s)}=0.$$

(24)

Condition (24) agrees with that ensuring $L^q(M)$ bounds for eigenfunctions.

The proof of Theorem 5 relies upon the following characterization of the compactness of the embedding

$$W^{1,2}(M) \to L^2(M).$$
 (25)

36 / 46

As a consequence of Theorem 5, the following sufficient condition in terms of the isoperimetric function of M holds.

Corollary 4 Assume that $\lim_{s\to 0} \frac{s}{\lambda_M(s)} = 0.$ Then the spectrum of the Laplacian on M is discrete.

Example 4 Manifold of revolution, with metric

$$ds^2 = dr^2 + \varphi(r)^2 d\omega^2 \tag{26}$$

and $arphi:[0,\infty)
ightarrow [0,\infty)$ such that

$$\varphi(r) = e^{-r^{\alpha}}$$
 for large r . (27)

FIGURE: A manifold of revolution

The larger is α , the better is M. One can show that

 $\lambda_M(s) pprox s \left(\log(1/s))
ight)^{1-1/lpha}$ near 0,

and

$$u_M(s) pprox \left(\int_s^{\mathcal{H}^n(M)/2} rac{dr}{\lambda_M(r)^2}
ight)^{-1} pprox s \left(\log(1/s)
ight)^{2-2/lpha} \qquad ext{near 0}.$$

The criteria involving λ_M tell us that all eigenfunctions of the Laplacian on M belong to $L^q(M)$ for $q < \infty$ if

$$\alpha > 1,$$
 (28)

and to $L^{\infty}(M)$ if

 $\alpha > 2. \tag{29}$

The same conclusions follow via the criteria involving ν_M .

Moreover, if $\alpha > 1$, then there exist constants $C_1 = C_1(q)$ and $C_2 = C_2(q)$ such that

$$||u||_{L^q(M)} \le C_1 e^{C_2 \gamma^{\frac{\alpha}{2\alpha-2}}} ||u||_{L^2(M)}$$

for any eigenfunction u of the Laplacian associated with the eigenvalue γ . If $\alpha > 2$, then there exist absolute constants C_1 and C_2 such that

$$||u||_{L^{\infty}(M)} \le C_1 e^{C_2 \gamma^{\frac{\alpha}{\alpha-2}}} ||u||_{L^2(M)}$$

for any eigenfunction u associated with $\gamma.$ The spectrum of the Laplacian on M is discrete if and only if

$\alpha > 1$

Example 5 Manifolds with clustering submanifolds.

.

FIGURE: A manifold with a family of clustering submanifolds

FIGURE: An auxiliary submanifold

In the sequence of mushrooms, the width of the heads and the length of the necks decay like 2^{-k} , the width of the neck decays like $\sigma(2^{-k})$ as $k \to \infty$, where

$$\lim_{s\to 0}\frac{\sigma(s)}{s}=0.$$

Assume, for instance, that b > 1 and

$$\sigma(s) = s^b \qquad \text{for } s > 0.$$

Then the criterion involving λ_M ensures that all eigenfunctions of the Laplacian on M are bounded provided that

b < 2.

The criterion involving ν_M yields the boundedness of eigenfunctions under the weaker assumption that

b < 3

By the use of ν_M we also get that if b < 3, then there exists a constant C = C(q) such that

$$||u||_{L^q(M)} \le C\gamma^{\frac{q-2}{q(3-b)}} ||u||_{L^2(M)}$$

for every $q \in (2, \infty]$ and for any eigenfunction u of the Laplacian associated with the eigenvalue γ .

Moreover, the characterization via ν_M implies that the spectrum of the Laplacian on M is discrete if and only if

b < 3

The use of λ_M tells us that spectrum of the Laplacian is discrete for

b < 2

only.

This example shows that the use of the isocapacitary function can actually lead to sharper conclusions than those obtained via the isoperimetric function.