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Lecture 1: Introduction, basic results and examples



• Let (M , g) be a smooth, connected and C∞

Riemannian manifold with boundary ∂M .

• The boundary is a Riemannian manifold with
induced metric g|∂M .

• We suppose ∂M to be smooth.



• For a function f ∈ C 2(M), we define the
Laplace operator or Laplacian by

∆f = δdf = −div gradf .

• d is the exterior derivative and δ the adjoint of
d with respect to the usual L2-inner product

(f , h) =

∫
M

f h dV

• dV denotes the volume form on (M , g).



• In local coordinates {xi}, the Laplacian reads

∆f = − 1√
det(g)

∑
i ,j

∂

∂xj
(g ij

√
det(g)

∂

∂xi
f ).

• In particular, in the Euclidean case, we recover
the usual expression

∆f = −
∑

j

∂

∂xj

∂

∂xj
f .



• Let f ∈ C 2(M) and h ∈ C 1(M) such that h df
has compact support in M . Then we have
Green’s Formula

(∆f , h) =

∫
M

〈df , dh〉dV −
∫
∂M

h
df

dn
dA

• df
dn denotes the derivative of f in the direction of
the outward unit normal vector field n on ∂M

• dA is the volume form on ∂M .



In particular, if one of the following conditions
∂M = ∅, h|∂M = 0 or (df

dn)|∂M = 0 is satisfied, then
we have the relation

(∆f , h) = (df , dh),

that is ∫
M

∆f h dV =

∫
M

〈df , dh〉dV



In the sequel, we will study the following eigenvalue
problems when M is compact:

• Closed Problem:

∆f = λf in M ; ∂M = ∅;

• Dirichlet Problem

∆f = λf in M ; f|∂M=0;

• Neumann Problem:

∆f = λf in M ; (
df

dn
)|∂M = 0.



Theorem

Let M be a compact manifold with boundary ∂M
(eventually empty), and consider one of the above
mentioned eigenvalue problems. Then:

• The set of eigenvalue consists of an infinite
sequence 0 < λ1 ≤ λ2 ≤ λ3 ≤ ...→∞, where 0
is not an eigenvalue in the Dirichlet problem;

• Each eigenvalue has finite multiplicity and the
eigenspaces corresponding to distinct
eigenvalues are L2(M)-orthogonal;

• The direct sum of the eigenspaces E (λi) is
dense in L2(M) for the L2-norm. Futhermore,
each eigenfunction is C∞-smooth and analytic.



Remark

The Laplace operator depends only on the given
Riemannian metric. If

F : (M , g)→ (N , h)

is an isometry, then (M , g) and (N , h) have the
same spectrum, and if f is an eigenfunction on
(N , h), then f ◦ F is an eigenfunction on (M , g) for
the same eigenvalue.



Weyl law: If (M , g) is a compact Riemannian
manifold of dimension n, then

λk(M , g) ∼ (2π)2

ω
2/n
n

(
k

Vol(M , g)
)2/n (1)

as k →∞, where ωn denotes the volume of the unit
ball of Rn.



In these lectures, I will investigate the question ”can
λk (and in particular λ1) be very large or very
small?”. The question seems trivial or naive at the
first view, but it is not, and I will try to explain that
partial answers to it are closely related to geometric
properties of the considered Riemannian manifold.



• Of course, there is a trivial way to produce
arbitrarily small or large eigenvalues:

• Take any Riemannian manifold (M , g). For any
constant c > 0, λk(c2g) = 1

c2λk(g) and an
homothety produce small or large eigenvalues.

• So, we have to introduce some normalizations,
in order to avoid the trivial deformation of the
metric given by an homothety.



Most of the time, these normalizations are of the
type ”volume is constant” or ”curvature and
diameter are bounded”.



Main goals:



Question 1:

• Try to find constants ak and bk depending on
geometrical invariants such that, given a
compact Riemannian manifold (M , g), we have

ak(g) ≤ λk(M , g) ≤ bk(g).

• There are a lot of possible geometric invariants:

• invariants depending on upper or lower bounds
of the curvature of (M , g);



• on upper or lower bounds of the volume or of
the diameter;

• on a lower bound of the injectivity radius of
(M , g).

• This will appear concretely during the lecture.



Question 2: Are the bounds ak and bk in some
sense optimal?



We can give different meaning to the word
”optimal”:

• For example, to see that ak (or bk) is optimal,
we can try to construct a manifold (M , g) for
which λk(M , g) = ak (or λk(M , g) = bk).

• If this is not possible we can do a little less:

• to construct a family (Mn, gn) of manifold with
λk(Mn, gn) arbitrarily close to ak(gn) (or bk(gn))

as n→∞, or such that the ratio λk(Mn,gn)
ak(gn) → 1

as n→∞.



Note that, concretely, this is difficult, and we can
hope to realize such a construction only for small k ,
in particular k = 1.



Question 3: Describe all manifolds (M , g) such
that λk(M , g) = ak . Again, this is difficult and you
may hope to do this only for small k .



To investigate the Laplace equation ∆f = λf is a
priori a problem of analysis. To introduce some
geometry on it, it is very relevant to look at the
variational characterization of the spectrum.



• Rayleigh quotient

• If a function f lies in H1(M) in the closed and
Neumann problems, and on H1

0 (M) in the
Dirichlet problem, the Rayleigh quotient of f is

R(f ) =

∫
M |df |2dV∫

M f 2dV
=

(df , df )

(f , f )
.

• If f is an eigenfunction for λk , we have

R(f ) =

∫
M |df |2dV∫

M f 2dV
=

∫
M ∆f fdV∫

M f 2dV
= λk .



• Variational characterization of the spectrum:

• Let us consider one of the 3 eigenvalues
problems. We denote by {fi} an orthonormal
system of eigenfunctions associated to the
eigenvalues {λi}.

• We have

λk = inf {R(u) : u 6= 0; u ⊥ f0, .., fk−1}

where u ∈ H1(M) (u ∈ H1
0 (M) for the Dirichlet

eigenvalue problem) and R(u) = λk if and only
if u is an eigenfunction for λk .



In particular, for a compact Riemannian manifold
without boundary, we have the classical fact

λ1(M , g) = inf {R(u) : u 6= 0;

∫
M

udV = 0}.



• Min-Max: we have

λk = inf
Vk

sup{R(u) : u 6= 0, u ∈ Vk}

where Vk runs through k + 1-dimensional
subspaces of H1(M) (k-dimensional subspaces
of H1

0 (M) for the Dirichlet eigenvalue problem).

• In particular, we have the very useful fact: for
any given (k + 1) dimensional vector subspace
V of H1(M),

λk(M , g) ≤ sup{R(u) : u 6= 0, u ∈ V }.



• A special situation is if Vk is generated by k + 1
disjointly supported functions f1, ..., fk+1:

• because

sup{R(u) : u 6= 0, u ∈ Vk} =

sup{R(fi) : i = 1, ..., k + 1},
the estimation becomes particularly easy to do.



• We can see already two advantages to this
variational characterisation of the spectrum.

• We don’t need to work with solutions of the
Laplace equation, but only with ”test
functions”, which is easier.

• We have only to control one derivative of the
test function, and not two, as in the case of the
Laplace equation.



Example: Monotonicity in the Dirichlet problem.

• Let Ω1 ⊂ Ω2 ⊂ (M , g), two domains of the
same dimension n of a Riemannian manifold
(M , g). Let us suppose that Ω1 and Ω2 are both
compact connected manifolds with boundary.

• If we consider the Dirichlet eigenvalue problem
for Ω1 and Ω2 with the induced metric, then for
each k

λk(Ω2) ≤ λk(Ω1)

with equality if and only if Ω1 = Ω2.



As a consequence, we have the following: if M is a
compact manifold without boundary, and if
Ω1,...,Ωk+1 are domains in M with disjoint interiors,
then

λk(M , g) ≤ max(µ1(Ω1), ..., µ1(Ωk+1)),

where µ1(Ω) denotes the first eigenvalue of Ω for
the Dirichlet problem.



The Cheeger’s dumbbell. The idea is to
consider two n-sphere of fixed volume V connected
by a small cylinder C of length 2L and radius ε.

The first nonzero eigenvalue converges to 0 as the
radius of the cylinder goes to 0.



• We choose a function f with value 1 on the first
sphere, −1 on the second, and decreasing
linearly, so that the norm of its gradient is 1

L .

• By construction we have
∫

fdV = 0, so that we
have λ1 ≤ R(f ).

• But the Rayleigh quotient is bounded above by

VolC/L2

2V

which goes to 0 as ε does.



Observe that we can easily fix the volume in all
these constructions: so to fix the volume is no
enough to have a lower bound on the spectrum.



How does the geometry allow to control the first
nonzero eigenvalue in the closed eigenvalue

problem?

Some classical results



• Let (M , g) be an n-dimensional compact
Riemannian manifold without boundary. The
Cheeger’s isoperimetric constant h = h(M) is
defined as follows:

• h(M) = inf
C
{J(C ); J(C ) = Voln−1C

min(VolnM1,VolnM2)},

where C runs through all compact codimension
one submanifolds which divide M into two
disjoint connected open submanifolds M1, M2

with common boundary C = ∂M1 = ∂M2.



Cheeger’s inequality

λ1(M , g) ≥ h2(M , g)

4
.



Buser proved thanks to a quite tricky example that
Cheeger’s inequality is sharp ([Bu1], thm. 1.19).



Buser’s inequality

• Let (Mn, g) be a compact Riemannian manifold
with Ricci curvature bounded below
Ric(M , g) ≥ −δ2(n − 1), δ ≥ 0. Then we have

λ1(M , g) ≤ C (δh + h2),

where C is a constant depending only on the
dimension and h is the Cheeger’s constant.

• So we have

h2

4
≤ λ1(M , g) ≤ C (δh + h2).



We cannot avoid the condition about the Ricci
curvature: example at the end of the talk.



Theorem of Cheng.

Recall the fundamental question:

Try to find constants ak and bk depending on
geometrical invariants such that, given a compact
Riemannian manifold (M , g), we have

ak(g) ≤ λk(M , g) ≤ bk(g).



• Cheng Comparison Theorem. Let (Mn, g) be a
compact n-dimensional Riemannian manifold
without boundary. Suppose that the Ricci
curvature satisfies Ric(M , g) ≥ (n − 1)K and
that d denote the diameter of (M , g).

• Then

λk(M , g) ≤ (n − 1)2K 2

4
+

C (n)k

d2

where C (n) is a constant depending only on the
dimension.



This paper [Che] of Cheng is really an important
reference, see MathSciNet. In particular, if
Ricci(M , g) ≥ 0, there are a lot of results in order
to find the best estimate, at least for λ1, but this is
not our purpose in this introduction.



• Theorem of Li and Yau. Let (M , g) be a
compact n-dimensional Riemannian manifold
without boundary. Suppose that the Ricci
curvature satisfies Ric(M , g) ≥ (n − 1)K and
that d denote the diameter of (M , g).

• Then, if K < 0,

λ1(M , g) ≥ exp − (1 + (1− 4(n − 1)2d2K )1/2)

2(n − 1)2d2
,

• If, for example, K = −1, we have

λ1(M , g) ≥ exp − (1 + (1 + 4(n − 1)2d2)1/2)

2(n − 1)2d2
,



• Essentially, for large d ,

λ1(M , g) ≥ e−(2(n−1)d)

2(n − 1)2d2
.

• If K = 0, then

λ1(M , g) ≥ π2

4d2
.



• Why do we need to control the curvature in the
inequality of Buser?

Let (Mn, g) be a compact Riemannian manifold
with Ricci curvature bounded below
Ric(M , g) ≥ −δ2(n − 1), δ ≥ 0. Then we have

λ1(M , g) ≤ C (δh + h2),

where C is a constant depending only on the
dimension and h is the Cheeger’s constant.

• We will construct an example with h small but
λ1 not small.



• We consider a torus S1 × S1 with its product
metric g and coordinates (x , y),−π ≤ x , y ≤ π
and a conformal metric gε = χ2

εg .

• The function χε is an even function depending
only on x , takes the value ε at 0, π, 1 outside an
ε-neighbourhood of 0 and π.

• We see immediatly that the Cheeger constant
h(gε)→ 0 as ε→ 0.



• It remains to see that λ1(gε) is uniformly
bounded from below.

• Let f be an eigenfunction for λ1(gε). We have

R(f ) =

∫
|df |2εdVε∫

f 2dVε
.

• Let S1 = {p : f (p) ≥ 0} and
S2 = {p : f (p) ≤ 0} and let F = f on S1 and
F = af on S2 where a is choosen such that∫

FdV = 0.



• This implies Rg(F ) ≥ λ1(g)

• Recall that: for a compact Riemannian manifold
without boundary, we have the classical fact

λ1(M , g) = inf {R(u) : u 6= 0;

∫
M

udV = 0}.

• So, it is enough to show that

Rg(F ) ≤ λ1(gε).



• But

R(F ) =

∫
S1
|df |2dV + a2

∫
S2
|df |2dV∫

S1
f 2dV + a2

∫
S2

f 2dV
,

• and ∫
Si

|df |2dVε =

∫
Si

|df |2dV ,

• ∫
Si

f 2dVε ≤
∫

Si

f 2dV .

This implies

•

λ1(gε) = Rgε(f ) ≥ R(F ) ≥ λ1(g).



Lecture 2: The case of the negatively curved
compact manifolds



In this lecture, I will explain how the fact of being
negatively curved influences the spectrum of a
manifold. I first give some general results and then I
will prove one of them in detail.



Most of the results are true for variable negative
curvature and manifolds of finite volume. In order
to avoid some technical difficulties, I will only deal
with the case of compact hyperbolic manifolds, that
is Riemannian manifolds with constant sectional
curvature −1.

For more generality, the reader may look at [BCD].



There will be two parts:

• First, some fact of geometry that I will describe
without proof (and the proofs are in general not
easy).

• Then in the second part, we will see some
consequences for the spectrum.



The geometry:

• First, except in dimension 2, it is difficult to
construct explicitely hyperbolic manifolds.

• Most of the construction are of algebraic nature,
and it is not easy to ”visualize” these manifolds.
However, there are some general results which
allow to have a good general idea of the
situation.

• A general reference for hyperbolic manifolds is
the book of Benedetti and Petronio [BP].



The thick-thin decomposition. Attached to
hyperbolic manifold is the so called Margulis
constant cn > 0 depending only on the dimension.



Define

Mthin = {p ∈ M : inj(p) < cn},
where inj denotes the injectivity radius, and

Mthick = {p ∈ M : inj(p) ≥ cn}.



The main consequences of the Margulis lemma (see
[BP],[Bu1]) are the following:

• Mthick 6= ∅.
• Moreover, if n ≥ 3, Mthick is connected.



• Mthin may be empty, but if not, each connected
component of Mthin is a tubular neighborhood of
a simple closed geodesic γ of length < cn.

• If R(γ) denotes the distance between γ and
Mthick , then

V (cn/2) ≤ Cnl(γ) sinh R(γ) ≤ Vol(M),

where V (cn/2) denote the volume of a ball of
radius cn/2 in the hyperbolic space, and Cn is a
positive constant depending only on the
dimension.



In particular, if the length of γ is small, then R(γ) is
large, of the order of ln(1/l(γ)).

The number of connected component of Mthin is
finite.



The structure of the volume.

• The possible values of the volume of an
hyperbolic manifold is rather special (see [G])
and there is a parallel between this structure of
the set of possible volume and the spectrum.

• In dimension 2, thanks to the theorem of
Gauss-Bonnet, the volume of an hyperbolic
surface of genus γ is 4π(γ − 1). But, for each
genus, there is a continuous family of hyperbolic
surfaces (indeed a family with 6γ − 6
generators).



In dimension n ≥ 4, given a positive number V0,
there exist only a finite number of hyperbolic
n-dimensional manifolds of volume ≤ V0.



The case of dimension 3 is special: the set of
volume admits accumulation points. They
correspond to a family of 3-dimensional hyperbolic
manifolds of volume < V which degenerate in some
sense to a non compact, finite volume hyperbolic
manifold of volume V . These examples are the
famous examples of Thurston, see [BP].



Implications for the spectrum



Case of surfaces, see [Bu1],[Bu4],:

• We consider the space Tγ of hyperbolic surfaces
of genus γ. Then

• For each ε > 0, there exist a surface S ∈ Tγ

with λ2γ−3 < ε.

• This result is easy to establish: it is like
construction of k small eigenvalue with the
Cheeger Dumbbell.



• It was known since a long time that λ4γ−3 >
1
4

for each S ∈ Tγ and conjectured that λ2γ−2 >
1
4

for each S ∈ Tγ.

• After some little progress, this conjecture was
solved very recently by Otal and Rosas, see
[OR].



For each ε > 0 and each integeer N > 0, there
exists a surface S ∈ Tγ with λN(S) ≤ 1

4 + ε. This is
a direct consequence of the Theorem of Cheng and
of the fact that there exist surfaces with arbitrarily
large diameter:

λN(S) ≤ 1

4
+

C2N

d2
.



Recall: Cheng Comparison Theorem. Let (Mn, g)
be a compact n-dimensional Riemannian manifold
without boundary. Suppose that the Ricci curvature
satisfies Ric(M , g) ≥ (n − 1)K and that d denote
the diameter of (M , g).

Then

λk(M , g) ≤ (n − 1)2K 2

4
+

C (n)k

d2

where C (n) is a constant depending only on the
dimension.



Case of dimension n ≥ 3:

• The new fact is that λ1 may be small only in the
case where the volume becomes large!

• Theorem of Schoen

There exists a constant C (n) > 0 such that for
each compact hyperbolic manifold (M , g) of
dimension n ≥ 3 we have

λ1(M , g) ≥ C (n)

Vol(M , g)2
.



• There is however a difference between the
dimension 3 and the higher dimensions.

• In dimension n ≥ 4: Buser proved in [Bu1] that
there exist a constant Cn > 0 such that if
(M , g) is a compact hyperbolic manifold of
dimension n ≥ 4, the number of eigenvalues in
the interval [0, x ] is bounded from above by
CnVol(M)xn/2 (for x large enough).



In dimension 3, it is possible to produce an
hyperbolic manifold with volume bounded from
above by a given constant V0 with an arbitrarily
large number of eigenvalues less than 1 + ε. This
comes from the fact that the above mentionned
Thurston examples have arbitrarily large diameter
and volume bounded from above, and from the
theorem of Cheng.



Proof of the theorem of Schoen.

Theorem of Schoen

There exists a constant C (n) > 0 such that for each
compact hyperbolic manifold (M , g) of dimension
n ≥ 3 we have

λ1(M , g) ≥ C (n)

Vol(M , g)2
.



• Proof of Dodziuk-Randol of this theorem, see
the paper [DR].

• It consists in looking at what can occur on the
different parts Mthin and Mthick . The connected
components of Mthin are simple enough to allow
to do some calculations in Fermi coordinates,
and to get good estimates. At the contrary,
Mthick is complicated, but at each point the
injectivity radius is large enough. This has two
implications:



• we can compare the volume and the diameter:
the diameter cannot be much larger than the
volume, because around each point there is
enough volume.

• we can use a Sobolev inequality and show that
an eigenvalue associated to a very small
eigenvalue is almost constant in the thick part,
which is intuilively clear, but in general not true
if we cannot control the injectivity radius and
the curvature.

• Putting all informations together, we can prove
the theorem.



• Eigenvalues of a thin part T of M. Recall
that the thin part is a tubular neighborhood of a
simple closed geodesic γ. We can endow it with
the Fermi coordinates.

• A point x = (t, ρ, σ) ∈ T is specified by its
position t an γ, its distance ρ from γ and a
point σ ∈ Sn−2. In these coordinates, the metric
has the form

g(x) = dρ2 + cosh2 ρdt2 + sinh2 ρdσ2,

• the volume element is (sinhn−2 ρ cosh ρ)dρdtdσ.



• Let f 6= 0 be a function which vanishes on the
boundary of T , and let us estimate its Rayleigh
quotient on T .

• We will show that∫
T

|df |2 ≥ (n − 1)2

4

∫
T

f 2,

that is

R(f ) ≥ (n − 1)2

4
.



• First

(

∫
T

f 2)2 =

= (

∫
Sn−2

dσ

∫ l

0

dt

∫ R

0

f 2(sinhn−2 ρ cosh ρ)dρ)2,

where l is the length of γ and R the radius of T
(depending on t and on σ).



• We integrate by part with respect to ρ and get∫ R

0

f 2(sinhn−2 ρ cosh ρ)dρ =

= − 2

n − 1

∫ R

0

ffρ sinhn−1 ρdρ.

• As sinh ρ < cosh ρ, we get



•

(

∫
T

f 2)2 ≤

4

(n − 1)2
(

∫
Sn−2

dσ

∫ l

0

dt

∫ R

0

|ffρ|(sinhn−2 ρ cosh ρ)dρ)2 =

= (
2

n − 1
)2(

∫
T

|ffρ|)2.



• Now, by Cauchy-Schwarz inequality,

(

∫
T

|ffρ|)2 ≤
∫

T

f 2

∫
T

f 2
ρ ,

and f 2
ρ ≤ |df |2, so that we get

•

(

∫
T

f 2)2 ≤ 4

(n − 1)2

∫
T

f 2

∫
T

f 2
ρ ≤

∫
T

f 2

∫
T

|df |2,

and

• ∫
T

|df |2 ≥ (n − 1)2

4

∫
T

f 2.



Remember: Example: Monotonicity in the Dirichlet
problem.

• Let Ω1 ⊂ Ω2 ⊂ (M , g), two domains of the
same dimension n of a Riemannian manifold
(M , g). Let us suppose that Ω1 and Ω2 are both
compact connected manifolds with boundary.

• If we consider the Dirichlet eigenvalue problem
for Ω1 and Ω2 with the induced metric, then for
each k

λk(Ω2) ≤ λk(Ω1)

with equality if and only if Ω1 = Ω2.



• At this stage, note that if φ is an eigenfunction
for λ1(M), and if it turns out that φ is of
constant sign on the thick part, it has to change
of sign on at least one of the connected
components of the thin part of M .

• This allow to construct a test function for the
Dirichlet problem on a tube T with Rayleigh
quotient λ1(M), so that we deduce that

λ1(M) ≥ (n−1)2

4

• this is certainly ≥ Cn

Vol(M,g)2 , for a convenient

constant C (n), because we know that the
volume of M is not arbitrarily small.



Of course, things are in general not so easy, and we
have to look at the thick part of M .



• The situation on the thick part. In each
point x of Mthick , the injectivity radius is at least
equal to the Margulis constant c(n), so that a
ball of a fixed radius r < cn will be embedded.
Let us denote such a ball by B .

• We want to show: On Mthick , there is a constant
C depending only on the dimension such that

|φ(y)− φ(x)| ≤ C
√
λ1(M)Vol(M)1/2. (2)



• On B , by a classical Sobolev inequality (see for
example [W], 6.29, p.240), if φ is an
eigenfunction for λ1(M), we have

|dφ(x)| ≤ C
N∑

i=0

‖∆idφ‖L2(B),

where C depend on r and on the geometry and
N = [n

4 ] + 1.

• But we fix r and the local geometry does not
change from one point to another, because of
the constant curvature.



As ∆ and d commute, and because φ is an
eigenfunction, we deduce

|dφ(x)| ≤ C‖dφ‖L2(B), (3)

and this is true for each point x ∈ Mthick .



• If x , y ∈ Mthick , we can join them by a (locally)
geodesic path γ of length ≤ C1V

• (the diameter of Mthick cannot be too large in
comparison of the total volume of M)

• We choose k points x = x0, ..., xk = y along γ
such that γ ⊂ ∪k

i=0B(xi , r/2), and such that one
of these balls intersects at most β other.



Then

|φ(y)− φ(x)| ≤
k−1∑
i=0

|φ(xi+1)− φ(xi)| ≤

≤ C
k−1∑
i=0

‖dφ‖L2(B(xi ,r) ≤

Ck1/2(
k−1∑
i=0

‖dφ‖2
L2(B(xi ,r))

1/2 ≤ Cβ1/2k1/2‖dφ‖L2(M)



• Again, k is, up to a constant, at most of the
order of the diameter of Mthick , that is of V , so
that we can summarize the situation by:

• On Mthick , there is a constant C depending only
on the dimension such that

|φ(y)− φ(x)| ≤ C
√
λ1(M)Vol(M)1/2. (4)



Conclusion of the proof. We want to show

λ1(M) ≥ C (n)

Vol(M)2
.

We suppose

λ1(M) =
ε

Vol(M)2
,

and show that his leads to a contradiction if ε is too
small.



• We consider an eigenfunction φ with ‖φ‖ = 1.

• For x , y ∈ Mthick , we have
|φ(x)− φ(y)| < α := C ε1/2

Vol(M)1/2 .

• Suppose first that

sup{|φ(x)| : x ∈ Mthick} ≥ α.

• Then things are easy, because φ cannot change
of sign in Mthick . We have λ1(M) ≥ (n−1)2

4 .



• So we can now suppose that

sup{|φ(x)| : x ∈ Mthick} < α.

We introduce

•

A = {x ∈ M : φ(x) ≥ α};
•

B = {x ∈ M : φ(x) ≤ −α};
•

C = {x ∈ M : |φ(x)| < α}.
• We know that A,B ⊂ Mthick .



• Let φ+ = φ + α and φ− = φ− α.

• φ+ and φ− are equal to 0 respectively on ∂B
and ∂A, and this implies

• ∫
B

|dφ|2 =

∫
B

|dφ+|2 ≥ (n − 1)2

4

∫
B

(φ+)2;

• ∫
A

|dφ|2 =

∫
A

|dφ−|2 ≥ (n − 1)2

4

∫
A

(φ−)2;



• So ∫
M

|dφ|2 ≥
∫

A∪B

|dφ|2 ≥

≥ (n − 1)2

4

∫
B

(φ+)2 +
(n − 1)2

4

∫
A

(φ−)2.

• But, as ε→ 0, |φ− φ+|, |φ− φ−| → 0 and∫
C φ

2 → 0, so that we can conclude.



Lecture 3: Estimates on the conformal class



• Let M be any compact manifold of dimension
n ≥ 3 and λ > 0.

• Then there exist a Riemannian metric g on M
with Vol(M , g) = 1 and λ1(M , g) ≥ λ.



We have to add some additive constraints if we
want to get upper bounds on λk



• It turns out that if we stay on the conformal
class of a given Riemannian metric g0, then, we
get upper bounds for the spectrum on volume 1
metrics, and it is the goal of this lecture to
explain this.

• Recall that the conformal class of a Riemannian
metric g0 consists of all Riemannian metric of
the type g(x) = h2(x)g0(x), where h > 0 is a
smooth function on M .



Theorem of Korevaar.

• Let (Mn, g0) be a compact Riemannian
manifold. Then, there exist a constant C (g0)
depending on g0 such that for any Riemannian
metric g ∈ [g0], where [g0] denotes the
conformal class of g0, then we have

λk(M , g)Vol(M , g)2/n ≤ C (g0)k2/n.

• Moreover, if the Ricci curvature of g0 is
nonegative, we can replace the constant C (g0)
by a constant depending only on the dimension
n.



• Recall that λk(M , g)Vol(M , g)2/n is invariant
through homothety of the metric, and this
control is equivalent of fixing the volume.

• The estimate is compatible with the Weyl law

λk(M , g) ∼ (2π)2

ω
2/n
n

(
k

Vol(M , g)
)2/n

which may be also written

λk(M , g)Vol(M , g)2/n ∼ (2π)2

ω
2/n
n

k2/n

• These estimates are not sharp in general.



In the special case of surfaces, we have a bound
depending only on the topology.

Let S be an oriented surface of genus γ. Then,
there exist a universal constant C such that for any
Riemannian metric g on S

λk(S , g)Vol(S) ≤ C (γ + 1)k .



These results were already known for k = 1, with
different kind of proofs and different authors (see
for example the introduction of [CE1]). However, in
order to make a proof for all k , Korevaar used a
completely new approach.



The way to get upper bounds is to construct test
functions, and it is nice to have disjointly supported
functions, because, in this case, recall that

λk ≤ sup{R(u) : u 6= 0, u ∈ Vk} =

= sup{R(fi) : i = 1, ..., k + 1}.



• A classical way to do this (see [Bu2], [LY]) is to
construct a family of (k+1) balls of center xi

i = 1, ..., k + 1, and radius r = (Vol(M,g)
Ck )1/n

such that B(xi , 2r) ∩ B(xj , 2r) = ∅. Here C > 0
is a constant depending on the dimension.

• Then, construct the test function fi with value 1
on B(xi , r), 0 outside B(xi , 2r), and for
p ∈ B(xi , 2r)− B(xi , r),
fi(p) = 1− 1

r d(p,B(xi , r)).

• Then |gradfi(p)| ≤ 1
r , and we have



•

R(fi) =

∫
M |dfi |2∫

M f 2
i

≤ 1

r 2

VolB(xi , 2r)

VolB(xi , r)
,

that is

•

R(fi) ≤ (
k

Vol(M , g)
)2/nC 2/n VolB(xi , 2r)

VolB(xi , r)
.



• So, we see that we need to control the ratio

VolB(xi , 2r)

VolB(xi , r)
.

• This depend a lot of what we know on the Ricci
curvature.



• Namely, we have the Bishop-Gromov inequality:
if Ricci(M , g) ≥ −(n − 1)a2g , with a ≥ 0, then
for x ∈ M and 0 < r < R ,

VolB(x ,R)

VolB(x , r)
≤ VolBa(x ,R)

VolBa(x , r)

where Ba denote the ball on the model space of
constant curvature −a2.



• So, if a > 0, the control of the ratio VolB(xi ,2r)
VolB(xi ,r) is

exponential in r and becomes bad for large r .

• If a = 0, that is if Ricci(M , g) ≥ 0, the ratio
VolB(xi ,2r)
VolB(xi ,r) is controled by a similar ratio but in

the Euclidean space, and this depend only on
the dimension!



However, when we look in a conformal class of a
given Riemannian metric g0, we have a priori no
control on the curvature, so it seems hopeless to get
such test functions. This is precisely the
contribution of N. Korevaar to develop a method
which allows to deal with such situations.



The construction of Grigor’yan-Netrusov-Yau.

The construction is a rather metric construction so
that we can present it on the context of metric
measured spaces.



Let (X , d) be a metric space. The annuli, denoted
by A(a, r ,R), (with a ∈ X and 0 ≤ r < R) is the set

A(a, r ,R) = {x ∈ X : r ≤ d(x , a) ≤ R}.

Moreover, if λ ≥ 1, we will denote by λA the annuli
A(a, r

λ , λR).



• Let a metric space (X , d) with a finite measure
ν. We make the following hypothesis about this
space:

• The ball are precompact (the closed balls are
compact);

• The measure ν is non atomic;

• There exist N > 0 such that, for each r , a ball
of radius r may be covered by at most N balls
of radius r/2.

• This hypothesis plays, in some sens, the role of
a control of the curvature, but, as we will see, it
is much weaker. Note that it is purely metric,
and has nothing to do with the measure.



• If these hypothesis are satisfied, we have the
following result

• For each positive integer k , there exist a family
of annuli {Ai}ki=1 such that

• We have ν(Ai) ≥ C (N)ν(X )
k , where C (N) is a

constant depending only on N ;

• The annuli 2Ai are disjoint from each other.



Proof of Theorem of Korevaar

• Let (Mn, g0) be a compact Riemannian
manifold. Then, there exist a constant C (g0)
depending on g0 such that for any Riemannian
metric g ∈ [g0], where [g0] denotes the
conformal class of g0, then we have

λk(M , g)Vol(M , g)2/n ≤ C (g0)k2/n.

• Moreover, if the Ricci curvature of g0 is
nonegative, we can replace the constant C (g0)
by a constant depending only on the dimension
n.



• The metric space X will be the manifold M with
the Riemannian distance associated to g0 (and
which has nothing to do with g).

• The measure ν will be the measure associated
to the volume form dVg .

• As M is compact, the theorem of
Bishop-Gromov give us a constant C1(g0) such
that, for each r > 0 and x ∈ M ,

Volg0
B(x , r)

Volg0
B(x , r/2)

≤ C1(g0).

• We know that C1(g0) will depend on the lower
bound of Ricci(g0) and of the diameter of
(M , g0).



• As the distance depends only on g0 we have a
control on the number of ball of radius r/2 we
need to cover a ball of radius r , thanks to a
classical packing lemma, see [Zu].

• Also, there exist C2 = C2(g0) such that, for all
r ≥ 0 and x ∈ M ,

Volg0
(B(x , r)) ≤ C2r n.



In general, these constant are bad: we can only say,
and this is the point for our theorem, that they
depend only on g0 and not on g . But if
Ricci(g0) ≥ 0, then the Bishop-Gromov theorem
allows us to compare with the euclidean space, and
these constants depend only on the dimension !



• In order to estimate λk(g), we use a family of
2k + 2 annuli given by the construction of
Grigor’yan-Netrusov-Yau and satisfying
Volg(Ai) ≥ C3(g0)

Volg (M)
k . Here, the constant C3

depends on g0 via C1(g0),as indicated in [GNY].

• As the annuli 2Ai are disjoint, we use them to
construct test functions with disjoint support.



• For an annuli A(a, r ,R) we will consider a
function taking the value 1 in A, 0 outside 2A,
and decreasing proportionaly to the distance
between A and 2A. Let us estimate the Rayleigh
quotient

R(f ) =

∫
2A |df |2gdVg∫

2A f 2dVg

of such a function.



• We have, thanks to an Holder inequality,

∫
2A

|df |2gdVg ≤ (

∫
2A

|df |ngdVg)2/nVolg(2A))1−2/n.

• Recall that, if 1
p + 1

q = 1,

∫
2A

uv dVg ≤ (

∫
2A

updVg)1/p(

∫
2A

v qdVg)1/q

and we use this for p = n/2, q = n
n−2 , u = |df |2g ,

v = 1.



• At this stage, we use the conformal invariance:

(

∫
2A

|df |ngdVg)2/n = (

∫
2A

|df |ng0
dVg0

)2/n,

• The conformal invariance comes from the fact
that

|df |ng = |df |nh2g0
=

1

hn
|df |ng0

and

dVg = dVh2g0
= hndVg0

.



• Because

|df |g0
≤ 2

r

(resp. 2
R ) and

•

Volg0
(B(x , r)) ≤ C2(g0)r n

we have

•

(

∫
2A

|df |ngdVg)2/n = (

∫
2A

|df |ng0
dVg0

)2/n ≤ C2(g0)2n.



• Moreover, we know that

Volg(A) ≥ C3(g0)
Volg(M)

k
.

• As we have 2k + 2 annuli, at least k + 1 of them
have a measure less than

Volg (M)
k .

• So,

R(f ) ≤ (C2(g0)2n)2/nVolg(M)(n−2)/nk

C3(g0)k (n−2)/nVolg(M)
=

= C (g0)(
k

Volg(M)
)2/n.



If Ricg0
≥ 0, the constants C1 and C2 depend only

on n, and the same is true for C3, and so, also for C .



Futher applications



When we know that we have upper bounds, we can
investigate things from a quantitative or qualitative
viewpoint. Let us give without any proof the
example of the conformal spectrum and of the
topological spectrum we developped with El Soufi.



• For any natural integer k and any conformal
class of metrics [g0] on M , we define the
conformal k-th eigenvalue of (M , [g0]) to be

•

λc
k(M , [g0]) =

= sup
{
λk(M , g)Vol(M , g)2/n : g ∈ [g0]

}
.

• The sequence {λc
k(M , [g0])} constitutes the

conformal spectrum of (M , [g0]).



In dimension 2, one can also define a topological
spectrum by setting, for any genus γ and any
integer k ≥ 0,

λtop
k (γ) = sup {λk(M , g)Vol(M , g)} ,

where g describes the set of Riemannian metric on
the orientable compact surface M of genus γ.



There are some difficult questions about the
conformal spectrum:

• Is the supremum a maximum, that it does it
exist a Riemannian metric g ∈ [g0] where
λkVol(M , g)2/n is maximum?

• It is hopeless to determine λk [g0] in general, but
shall we say something in the case of the sphere,
for example?



We have the following qualitative theorem:

For any conformal class [g ] on M and any integer
k ≥ 0,

λc
k(M , [g ]) ≥ λc

k(Sn, [gs ]),

where gs is the canonical metric on the sphere Sn.



For any conformal class [g ] on M and any integer
k ≥ 0,

λc
k+1(M , [g ])n/2−λc

k(M , [g ])n/2 ≥ λc
1(Sn, [gs ]) = nn/2ωn,

where ωn is the volume of the n-dimensional
Euclidean sphere of radius one.



For any conformal class [g ] on M and any integer
k ≥ 0,

λc
k(M , [g ]) ≥ nω2/n

n k2/n.



This implies

nω2/n
n k2/n ≤ λc

k(M , [g ]) ≤ Ck2/n

for some constant C (depending only on n and a
lower bound of Ric d2, where Ric is the Ricci
curvature and d is the diameter of g or of another
representative of [g ]).



• Corollary implies also that, if the k-th eigenvalue
λk(g) of a metric g is less than nω

2/n
n k2/n, then

g does not maximize λk on its conformal class
[g ].

• For instance, the standard metric gs of S2,
which maximizes λ1, does not maximize λk on
[gs ] for any k ≥ 2. This fact answers a question
of Yau (see [Y], p. 686).



Lecture 4: The spectrum of submanifolds of the
euclidean space



• In this lecture, we will consider submanifolds of
the euclidean space. Some of the results I will
give may be generalized for other spaces, for
example the hyperbolic space, and this is more
or less difficult depending on the question

• The goal of this lecture is also to present a
classical method to get upper bound, namely the
use of coordinates functions. But it applies for
λ1 and in general not for the other eigenvalues.



Two typical results for the first nonzero eigenvalue:



• Theorem of Reilly (1977): Let Mm be a compact
submanifold of dimension m of Rn. Then,

λ1(M) ≤ m

Vol(M)
‖H(M)‖2

2 =
m

Vol(M)

∫
M

H2dV

where ‖H(M)‖2 is the L2-norm of the mean
curvature vector field H of M .

• Moreover, the inequality is sharp, and the
equality case correspond exactly to the case
where M is isometric to a round sphere of
dimension m.



This result was generalized to the submanifolds of
the sphere and of the hyperbolic space by Grosjean
[Gr] and to hypersurfaces of rank 1 symmetric
spaces by Santhanam [San].



Theorem of Chavel (1978)

• Let Σ be an embedded compact hypersurface
bounding a domain Ω in Rn+1. Then

•

λ1(Σ)Vol(Σ)2/n ≤ n

(n + 1)2
I (Ω)2+ 2

n , (5)

where I (Ω) is the isoperimetric ratio of Ω,

• that is

I (Ω) =
Vol(Σ)

Vol(Ω)n/(n+1)
.



Moreover, equality holds in (6) if and only if Σ is
embedded as a round sphere.



Indeed, Chavel proved this theorem for hypersurface
of a Cartan-Hadamard manifold (complete, simply
connected manifold, with non positive sectional
curvature).



• These results lead to natural questions

• Question 1: is it possible to generalize these
results to other eigenvalues.

• Question 2: Is it really necessary to impose
conditions on the curvature or on the
isoperimetric ratio, at least for hypersurfaces?



The answer to the second question is yes: namely,
in [CDE], we show that, for n ≥ 2, it is possible to
produce an hypersurface of Rn+1 with volume 1 and
arbitrarily large first nonzero eigenvalue. If n ≥ 3,
we can even prescribe the topology.



The answer to the first question is also yes, but the
generalization is not easy.



Proof of Theorem of Chavel

Let Σ be an embedded compact hypersurface
bounding a domain Ω in Rn+1. Then

λ1(Σ)Vol(Σ)2/n ≤ n

(n + 1)2
I (Ω)2+ 2

n , (6)

where I (Ω) is the isoperimetric ratio of Ω.

Moreover, equality holds in (6) if and only if Σ is
embedded as a round sphere.



• We will present the proof of the Theorem of
Chavel by using a very classical method coming
from Hersch: the use of coordinates functions
(we speak sometimes from barycentric
methods).

• The idea is to use the restriction to Σ of the
coordinates functions of Rn+1as test functions.



• If we have

ai =

∫
Σ

xidVΣ,

then

• ∫
Σ

(xi −
ai

Vol(Σ)
)dVΣ = 0.



• So a change of coordinates (or by putting the
origine at the barycenter of Σ), we can suppose∫

Σ

xidVΣ = 0

for i = 1, ..., n + 1 This mean that we have in
the hands (n + 1) test functions in order to find
an upper bound for λ1(Σ).

• We know that

λ1(Σ) ≤
∫

Σ |grad xi |2ΣdVΣ∫
Σ x2

i dVΣ

for i = 1, ..., n + 1.



The goal is now to rely the quantities∫
Σ

|grad xi |2ΣdVΣ and

∫
Σ

x2
i dVΣ

to the isoperimetric ratio, that is to quantities like
Vol(Σ) and Vol(Ω).



• We introduce the position vector field X on
Rn+1, given by X (x) = x .

• We get immediatly div X = n + 1.

• The Green formula says that∫
Ω

div XdVΩ =

∫
Σ

〈X , ν〉dVΣ,

where ν is the outward normal vector field of Σ
with respect to Ω.



• This implies

(n + 1)Vol(Ω) ≤
∫

Σ

|X |dVΣ ≤

≤ Vol(Σ)1/2(

∫
Σ

|X |2dVΣ)1/2

• So, we express |X |2 and get

(n + 1)Vol(Ω) ≤ Vol(Σ)1/2(

∫
Σ

(
n+1∑
i=1

x2
i )dVΣ)1/2.



• At this stage we use the relation∫
Σ

|grad xi |2ΣdVΣ ≥ λ1(Σ)

∫
Σ

x2
i dVΣ.



• We have

(n+1)Vol(Ω) ≤ Vol(Σ)1/2(

∫
Σ

(
n+1∑
i=1

x2
i )dVΣ)1/2 ≤

≤ (
Vol(Σ)

λ1(Σ)
)1/2(

∫
Σ

(
n+1∑
i=1

|grad xi |2ΣdVΣ)1/2.

• So we need to control this last term: for x ∈ Σ,
we introduce a orthonormal basis F1, ...,Fn of
TxΣ, and note that grad xi = ei in Rn+1.



• On Σ, we have

grad xi =
n∑

j=1

〈grad xi ,Fj〉Fj ,

so that

•

n+1∑
i=1

|grad xi |2Σ =
n+1∑
i=1

n∑
j=1

〈grad xi ,Fj〉2 =

=
n∑

j=1

n+1∑
i=1

〈grad xi ,Fj〉2 =
n∑

j=1

|Fj |2 = n.



• We can summarize this by

λ1(Σ) ≤ Vol(Σ)2

Vol(Ω)2

n

(n + 1)2
,

which is indeed the result of Chavel’s paper.

• We immediatly deduce

λ1(Σ)Vol(Σ)2/n ≤ n

(n + 1)2
I (Ω)2+ 2

n .



• To finish the proof, we have to study the
equality case: to have equality means that all
inequalities become equalities. In particular, at
each point x ∈ Σ, we have |X | = 〈X , ν〉.

• This implies that X is proportional to ν. If we
have an hypersurface such that the position
vector proportional to the normal vector, this is
a round sphere.



Some generalizations

If we want to generalize these results for other λk , it
is hopeless to use the same barycentric method as
for λ1.



• Concerning results of the type Reilly, there were
generalized recently by El Soufi, Harrell and
Illias [EHI]:

• Let Mm be a compact submanifold of Rn. Then,
for any positive integer k ,

λk(M) ≤ R(m)‖H(M)‖2
∞ k2/m,

where ‖H(M)‖∞ is the L∞-norm of H(M) and
R(m) is a constant depending only on m.



Concerning upper bounds in terms of the
isoperimetric ratio, we have the following result in
[CEG] (see El Soufi’s talk in this congress):

For any bounded domain Ω ⊂ Rn+1 with smooth
boundary Σ = ∂Ω, and all k ≥ 1,

λk(Σ)Vol(Σ)2/n ≤ γnI (Ω)1+2/nk2/n (7)

with γn is a positive constant depending only on n.



In order to prove this theorem, the idea is again to
find a good set of test functions, and, in order to
find these test functions, to find a nice covering of
Σ with disjoint sets. To this aim, we can use a
method developped with D. Maerten in [CMa]. This
method is in the spirit of what did Grigor’yan,
Netrusov and Yau, and it has a lot of applications.
The main result is as follow:



• Let (X , d , µ) be a complete, locally compact
metric measured space, where µ is a finite
measure. We assume that for all r > 0, there
exists an integer N(r) such that each ball of
radius 4r can be covered by N(r) balls of radius
r .

• If there exist an integer K > 0 and a radius
r > 0 such that, for each x ∈ X

µ(B(x , r)) ≤ µ(X )

4N2(r)K
,



Then, there exist K µ-measurable subsets A1, ...,AK

of X such that, ∀i ≤ K , µ(Ai) ≥ µ(X )
2N(r)K and, for

i 6= j , d(Ai ,Aj) ≥ 3r .



Some open questions



Open question 1: It is related to this lecture.

There are some results for λ1 obtained with
barycentric methods that we are (at the moment)
not able to generalize to other eigenvalues. An
emblematic example is a Theorem du to El Soufi
and Ilias [EI2].



They consider a Riemannian manifold (Mm, g) and
look at a Schroedinder operator, namely
∆q = ∆g + q where ∆g is the usual Laplacian, and
q is a C∞ potential. We also denote by q̄ the mean
of q on M , namely q̄ = 1

Vol(M,g)

∫
M qdVg .



• Then, El Soufi and Ilias study the second
eigenvalue of ∆ + q, denoted by λ1(∆g + q)
(and which correspond to the ”usual” λ1 when
q is 0) for g on the conformal class of a given
metric g0.

• We have

λ1(∆g + q) ≤ m(
VC (g0)

Vol(M , g)
)2/m + q̄

where VC (g0) is a conformal invariant, the
conformal volume.

• The generalization of this theorem to higher
eigenvalues is not known.



• Open question 2: This question is related to the
lecture 3.

• When we know that the supremum of the
functional λk is bounded on a certain set of
metric (a.e. the conformal class of a given
Riemannian metric), it may be interesting to
look at qualitative results in the spirit of the
results obtained with El Soufi, and that I
described in lecture 3.

• I give two situations where this may be
interesting (and not trivial).



• Case 1: We consider the Neumann problem for
domains Ω (bounded, smooth boundary) of the
hyperbolic space Hn.

• Let

νk(V ) = supΩ⊂Hn{νk(Ω) : Vol(Ω) = V },

where νk denotes the k-th eigenvalue for the
Neumann problem. It is known that this
supremum exists (see for example [CMa]).



• Then it is interesting to study this spectrum:

• Is νk+1(V )− νk(V ) > 0 ?

• If the answer is yes, it it possible to estimate the
gap?

• How does νk(V ) depend on V ?



Note that the same question for the euclidean space
is not so interesting: we can do more or less the
same as we did with A. El Soufi for the conformal
spectrum.



• Case 2: We consider the set of compact,
convex embedded hypersurfaces of the euclidean
space.

• Let
λk = supΣ{λk(Σ)},

where Σ describes the set of convex
hypersurface of volume 1. It is known that this
supremum exists (see [CDE]).

• What about λk+1 − λk?

• What can be said in the special case of λ1? We
may think that the supremum is given by the
round sphere.



Open question 3: A lot of questions concern the
Hodge Laplacian, that is the Laplacian acting on
p-form. One interesting question concerns the
compact 3-dimensional hyperbolic manifolds.



• It was shown in [CC] that when a family of
compact hyperbolic 3-manifolds degenerates to
a non compact manifold of finite volume, it
forces the apparition of small eigenvalues for
1-forms. The eigenvalues we constructed are
≤ C

d2 where C is a universal constant and d is
the diameter.

• The question is to decide whether or not we
have a lower bound of the type C

d2 , or if we can
construct much smaller eigenvalues.



There are some partial answers in [MG], [Ja], but
the question is open. One of the interest is that the
topology of the manifolds of the degenerating family
will certainly play a role and has to be well
understood and related to the spectrum.


