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Quantum Graphs

Metric Graphs, Metric Trees

> ) ... set of vertices

> £ ... set of edges, i.e. intervals

» metric defined by the distance, e.g. |x| = dist(o, x)
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Quantum Graphs

Quantum Graphs
Define Schrodinger operator H(a) in L2(I) = @, L?(e), acting
as 2¢
H(a)p = —— + V(x)¢ on every edge e,
where ¢ € D(H(a)) <

peH(e) Veel, Y |I6I3pe < oo

ecé

with Kirchhoff (Neumann) b.c. in every vertex v € V, ie. ¢ is
continuous in v and

> @(v)zo Vve.

dx
ecE,
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Quantum Graphs

Quantum Graphs

assumption:
‘Xl‘iLnoo V(x) =0,
then
ess(H(a)) = [0, 00)
and
od(H(a)) = {-Ej(a) <0, j € N}
How do the eigenvalues —E;(«) depend on V7

4

spectral inequalities: . E/(a) < 7
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Lieb-Thirring inequalities for metric trees

Lieb-Thirring inequalities for metric trees

Theorem [D., Harrell]

Let I be a metric tree with a finite number of vertices and edges
and V € LY*Y2(T). Then the Lieb-Thirring inequality (LTI)

@23 Ela) < Ly [V e
J

holds for all « > 0 and v > 2.

LS, ... classical constant.
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Classical LTI in RY

Classical Lieb-Thirring inequalities in R
H(a) = —alA + V(x) in L*(RY), a > 0.
Lieb-Thirring inequalities
d/2 Y y+d/2
0?2y E(a) < Ly '/Rdmx))f dx,
J

for suitable values of v (depending on d) and

My +1)
2d7d/2[ (v 4+ 1+ d/2)

cd ._
L"/ad > L’y,d T

Weyl's law:

, d/2 Yooy g +d/2
Jim o ZEj(a)—Lf%d/Rd(V(x))V dx.
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Classical LTI in RY

Stubbe’s proof of sharp LT for v > 2

» A trace formula ("sum rule”) of Harrell-Stubbe '97, for
H=—-aA+V:

ZE;’( —Q—ZE’ Y(@)[|V;]|? = explicit expr. < 0.

9Ei(a)
Oa

> < ¢j, —A¢; >=|[Vy||> = (Feynman-Hellman)

Thus
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Classical LTI in RY

Stubbe’s proof of sharp LTI for v > 2

0
e (ad/2 Z Ef(a)) <0.

And classical LTI is an immediate consequence for v > 2!

a®?N"El(@) < lim a??Y El(a) =Ly /Rd(v_(x))vw/z dx.

a—0+
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Classical LTI in RY

Stubbe’s proof of sharp LTI for v > 2

0
e (ad/2 Z Ef(a)) <0.

And classical LTI is an immediate consequence for v > 2!

a®?N"El(@) < lim a??Y El(a) =Ly /Rd(v_(x))vw/z dx.

a—0+

Does an analog of the LTI (d = 1) hold also for QGraphs with
the same sharp constants Lf/fl?

in general: NO!

Qi
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Idea of the proof

What about QGraphs?

For metric trees:
Y El(a)<C / )+ 2dx, 4 >1/2 [E, F, K]

__gcl
C, =L
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Idea of the proof

What about QGraphs?

For metric trees:
Y El(a)<C / )+ 2dx, 4 >1/2 [E, F, K]

G, =1Lg7
YES for v > 2

Theorem [D., Harrell]
Let I be a metric tree with a finite number of vertices and edges
and V € LY*Y2(T). Then the Lieb-Thirring inequality (LTI)

041/22 Ef"(oz) < Lg{l /(V_(x))”’drl/2 dx
J

JI

holds for all « > 0 and v > 2.
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Idea of the proof

Idea of proof:

» sum rule of Harrell and Stubbe:
3 2 E7 <G, [H, Gllgj, &; > —Ej|[H, Glej|I*> <0,

» averaging argument:
family of piecewise affine functions G
= reduction of the problem to a combinatorial problem

» Stubbe’s monotonicity argument
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