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Metric Graphs, Metric Trees
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I V . . . set of vertices

I E . . . set of edges, i.e. intervals
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I metric defined by the distance, e.g. |x | = dist(o, x)
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Quantum Graphs

Define Schrödinger operator H(α) in L2(Γ) =
⊕

e∈E L2(e), acting
as

H(α)φ = −d2φ

dx2
+ V (x)φ on every edge e,

where φ ∈ D(H(α)) ⇔

φ ∈ H2(e) ∀ e ∈ E ,
∑
e∈E
‖φ‖2

H2(e) <∞

with Kirchhoff (Neumann) b.c. in every vertex v ∈ V, i.e. φ is
continuous in v and∑

e∈Ev

dφ

dx
(v) = 0 ∀ v ∈ V.
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Quantum Graphs

assumption:
lim
|x |→∞

V (x) = 0,

then
σess(H(α)) = [0,∞)

and
σd(H(α)) = {−Ej(α) < 0, j ∈ N}

How do the eigenvalues −Ej(α) depend on V ?

⇓

spectral inequalities:
∑

j Eγj (α) ≤ ?
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Lieb-Thirring inequalities for metric trees

Theorem [D., Harrell]

Let Γ be a metric tree with a finite number of vertices and edges
and V ∈ Lγ+1/2(Γ). Then the Lieb-Thirring inequality (LTI)

α1/2
∑

j

Eγj (α) ≤ Lcl
γ,1

∫
Γ
(V−(x))γ+1/2 dx

holds for all α > 0 and γ ≥ 2.

Lcl
γ,1 . . . classical constant.
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Classical Lieb-Thirring inequalities in Rd

H(α) = −α∆ + V (x) in L2(Rd), α > 0.

Lieb-Thirring inequalities

αd/2
∑

j

Eγj (α) ≤ Lγ,d

∫
Rd

(V−(x))γ+d/2 dx ,

for suitable values of γ (depending on d) and

Lγ,d ≥ Lcl
γ,d :=

Γ(γ + 1)

2dπd/2Γ(γ + 1 + d/2)

Weyl’s law:

lim
α→0+

αd/2
∑

Eγj (α) = Lcl
γ,d

∫
Rd

(V−(x))γ+d/2 dx .
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Stubbe’s proof of sharp LT for γ ≥ 2

I A trace formula (”sum rule”) of Harrell-Stubbe ’97, for
H = −α∆ + V :∑

Eγj (α)− α2γ

d

∑
Eγ−1

j (α)‖∇φj‖2 = explicit expr. ≤ 0.

I < φj ,−∆φj >= ‖∇φj‖2 =
∂Ej(α)

∂α
(Feynman-Hellman)

Thus ∑
E 2

j (α) ≤ 2α

d

∂

∂α

∑
E 2

j (α)

∂

∂α

(
αd/2

∑
E 2

j (α)
)
≤ 0.
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Stubbe’s proof of sharp LTI for γ ≥ 2

∂

∂α

(
αd/2

∑
E 2

j (α)
)
≤ 0.

And classical LTI is an immediate consequence for γ ≥ 2!

αd/2
∑

Eγj (α) ≤ lim
α→0+

αd/2
∑

Eγj (α) = Lcl
γ,d

∫
Rd

(V−(x))γ+d/2 dx .

Does an analog of the LTI (d = 1) hold also for QGraphs with
the same sharp constants Lcl

γ,1?

in general: NO!
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Stubbe’s proof of sharp LTI for γ ≥ 2

∂

∂α

(
αd/2

∑
E 2

j (α)
)
≤ 0.

And classical LTI is an immediate consequence for γ ≥ 2!

αd/2
∑

Eγj (α) ≤ lim
α→0+

αd/2
∑

Eγj (α) = Lcl
γ,d

∫
Rd

(V−(x))γ+d/2 dx .

Does an analog of the LTI (d = 1) hold also for QGraphs with
the same sharp constants Lcl

γ,1?

in general: NO!
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What about QGraphs?
For metric trees:∑

Eγj (α) ≤ Cγ

∫
Γ
(V−(x))γ+1/2 dx , γ ≥ 1/2 [E, F, K]

Cγ = Lcl
γ,1?

YES for γ ≥ 2

Theorem [D., Harrell]
Let Γ be a metric tree with a finite number of vertices and edges
and V ∈ Lγ+1/2(Γ). Then the Lieb-Thirring inequality (LTI)

α1/2
∑

j

Eγj (α) ≤ Lcl
γ,1

∫
Γ
(V−(x))γ+1/2 dx

holds for all α > 0 and γ ≥ 2.
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What about QGraphs?
For metric trees:∑

Eγj (α) ≤ Cγ

∫
Γ
(V−(x))γ+1/2 dx , γ ≥ 1/2 [E, F, K]

Cγ = Lcl
γ,1?

YES for γ ≥ 2

Theorem [D., Harrell]
Let Γ be a metric tree with a finite number of vertices and edges
and V ∈ Lγ+1/2(Γ). Then the Lieb-Thirring inequality (LTI)

α1/2
∑

j

Eγj (α) ≤ Lcl
γ,1

∫
Γ
(V−(x))γ+1/2 dx

holds for all α > 0 and γ ≥ 2.
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Idea of proof:

I sum rule of Harrell and Stubbe:
1
2

∑
E 2

j < [G , [H,G ]]φj , φj > −Ej‖[H,G ]φj‖2 ≤ 0,

Gφj ∈ D(HΓ)?

I averaging argument:
family of piecewise affine functions G
⇒ reduction of the problem to a combinatorial problem

I Stubbe’s monotonicity argument
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