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I. MATHEMATICS IN TUNIS in 1969-1970

(A local and more recent history!)

Location:

In 1968, the university was located in the downtown

Place de la Monnaie, (near Ave de Paris). The Dean

was Adnan Zmerli (physicist).

Then in 1969 we first moved to what is now ENIT,

(Ecole Nationale d’Ingenieurs de Tunis)

During spring 1970 the faculty of sciences was finished.

The hill (which is now El Menzah X or ....) was

almost empty; there were three buildings (these two

ones and the RTT). There was only one tree by the

TV and there was only one road to reach the ”campus”.

Around 1969, Cite Carnoy (downhill) was built.



Raoued - Gammarth After the ”Lagon Bleu” it was

completely empty. Except 2 restaurants and one cen-

ter for children there was nothing on this huge beach

untill Raoued village. Around 1989 they started the

construction of some hotels... And now...



People MS Baouendi and his collegues...: Mainly

Fatma Moalla, Khelifa Harzallah, Mohamed Amara,

attracted several mathematicians. We saw the coming

of

JM Bony, J.Faraut, C.Goulaouic, P.Grisvard, B.Malgrange,

JP Ramis, J.Chazarin, G.Ruget, J.Camus, P.Bolley, ...

Also for shorter visits:

L.Hörmander, JP Kahane, P.Blanchard, ...

The young tunisians: Moncef Hamza,... Houcine

Chebli (ex Ouergemi) Khelifa Trimeche,...

Tunis was an excellent department in analysis, (PDE

and potential theory mainly). All the members of this

math department were young and enthousiastic.



”Can one hear the shape of a drum?” (by M.Kac) was

the first paper that I studied under the supervision of

Jacques Faraut in Tunis.

Now there are more than 100 mathematicians attending

the annual conference of SMT (Société Mathématique

de Tunisie) and also many universities, ISET, ...



II. RECALLS ON THE COUNTING FUNCTION

Let Ω be a bounded domain in IRn with boundary ∂Ω

and consider the EVP

(EV ) −∆u = λu in Ω; u|∂Ω = 0.

There exists a countable set of eigenvalues:

0 < λ1 < λ2 ≤ λ3 ≤ ... ≤ λk ≤ ...

each eigenvalue being repeated according to (algebraic)

mutiplicity.

For a given positive λ, the “counting function” is

N(λ,−∆,Ω) = N(λ) := #{(0 <)λk < λ}.



II. 1. The rectangle and Gauss estimate

Consider now a rectangle: R = (O, a)×(O, b) ⊂ R2; For

that domain the solutions to (EV ) are :

(1) u(x, y) = sin(pπx/a)sin(qπy/b), p ∈ N∗; q ∈ N∗.

The associated eigenvalues are λp,q = (p.π/a)2+(q.π/b)2.

We make use of Gauss estimates (1801) on the number

of pair of integers inside the quater of ellipse

N (λ/π2) := #{(p, q) ∈ IN∗ × IN∗/(
pπ

a
)2 + (

qπ

b
)2 < λ};

this number is proportional to the quarter of the area

of that ellipse, and hence for the counting function :

(2) N(λ,−∆,R) ' (4π)−1.a.b.λ, as λ→∞.



II. 2. A bounded domain and Weyl’s estimate

Now Ω ⊂ Rn is a sufficiently “smooth” bounded domain

with volume |Ω|; H.Weyl (1911) has shown that [We]:

(3) N(λ,−∆,Ω) ' (2π)−nωn|Ω|λn/2, as λ→ +∞,

with ωn the volum of the unit ball in IRn.

Notation: From now on set

(W ) W (λ,Ω) := (2π)−nωn|Ω|λn/2

the “Weyl term”.



II. 3. Some extensions

Estimate (3) holds also

for irregular domains (e.g. with cusps) (JF + G.Métivier,

1973),

for unbounded domains with finite measure.

There are also results for Schrödinger operators, for

problems defined on unbounded domains

For weighted elliptic problems of Schrödinger type:

Lu+ q(x)u = λp(x)u

defined on IRn, we derive two kinds of behavior (as Weyl

or as Schrödinger) if p/q → 0 at infinity.



For the spiny urchin (C.Clark), as λ→∞ :

N(λ,−∆) ' λLn2(λ)



After 1911, for the “classical” problem above, a chal-

lenge was to obtain a more precise estimate in particular

the second term of the counting function.

II.4. The Remainder term

We study now, as λ→ +∞, the ”remainder term” :

N(λ,−∆,Ω) − W (λ,Ω).

Under some conditions on the symmetries of the do-

main, and on the smoothness of the boundary, then

(4)

N(λ,−∆,Ω) = W (λ,Ω)− γnL(∂Ω)λ(n−1
2 ) + o(λ)(n−1

2 )

as λ→ +∞.

Here γn is a constant depending only on n;



L(∂Ω) is the n− 1 measure (length) of ∂Ω.

For these estimates 2 methods:

Fourier Integral operators (see e.g. Ivrii, Sjöstrand, Helf-

fer...)

Dirichlet Neumann bracketing (JF, Métivier, Edmunds

and Evans,...)



Dirichlet Neumann bracketing and some inequali-

ties

� N(λ,−∆,Ω) the counting function for the Dirichlet

Laplacian increases with the domain Ω.

� N(λ,−∆,Ω) ≤ NN(λ,−∆,Ω) where NN(λ,−∆,Ω) is

the counting function for the Neumann problem.

� Assume

Ω = Ω1 ∪Ω2 with Ω1 ∩Ω = ∅

then

N(λ,−∆,Ω1) +N(λ,−∆,Ω2) ≤ N(λ,−∆,Ω) ≤

NN(λ,−∆,Ω1) +NN(λ,−∆,Ω2).



III. THE PARTITION FUNCTION

III.1. Z(t)

Other functions of eigenvalues are also of interest. For
example the partition function (Laplace transform of
the spectral function) Z(t,Ω) :

(5) Z(t,Ω) :=
∞∑
j=1

e−λjt = t
∫ ∞
o

e−tλN(λ,Ω)dλ

It is the trace of the heat kernel; one has:

(6) Z(t,Ω) = (4πt)−n/2(|Ω|n + a1t+ . . . .) as t→ 0;

The terms a1, a2, ... appearing in (6) are the mea-
sure (length) of the boundary and also the number of
holes, the curvature,... (c.f. e.g., Berger; Gauduchon;
Mazet).

Remark The knowledge of N(λ) implies the knowledge
of Z(t) but the converse is not true!



III.2 ”CAN ONE HEAR THE SHAPE OF A

DRUM?” [Kac]

This famous question was raised by M.Kac in 1965;

indeed, is it possible, for a perfect ear, just by listening

at the tones and overtones to determine precisely the

shape of a vibrating membrane?

Remark From Weyl’s estimate we deduce that the

knowledge of the frequencies of Ω implies the knowl-

edge of the volum |Ω|. Nevertheless, if the spectra of

the Dirichlet Laplacian on a domain gives many infor-

mations on the domain it has been proved that the

counting function or the partition function do not de-

termine entirely the geometry of the domain. Urakawa.

Gordon, Webb and Wolpert have constructed planar

isospectral domains which are not isometrical.



IV. DOMAINS WITH FRACTAL BOUNDARIES

IV.1 Berry’s Conjecture

Recall As λ→ +∞
(4)

N(λ,−∆,Ω) = W (λ,Ω)− γnL(∂Ω)λ(n−1
2 ) + o(λ)(n−1

2 ),

In 1979, M.V.Berry, studying the scattering of waves

by fractals conjectured that (4) was still valid for Ω,

with fractal boundary, just by replacing n − 1 by h the

Hausdorff dimension of the boundary [Be]:

(7) N(λ) = W (λ,Ω)−γnL(∂Ω)λh/2+o(λ)h/2, λ→ +∞



IV.2. Hausdorff Dimension:

This dimension was popularized by B.Mandelbrot.

For a given number ε > 0 we consider covering of the

boundary ∂Ω by balls Bi with radii ri ≤ ε.

For any t > 0, set

M(t) := lim
ε→0

(inf
∑

rti).

The infimum for all coverings defines the Hausdorff di-

mension:

h := inf{t > 0/M(t) < +∞}

.



IV.3 Bouligand-Minkowski Dimension:

The Bouligand-Minkowski dimension is the Minkowski

dimension extended by Bouligand [Bo] to non integer

numbers.

For a given ε > 0 consider the interior boundary strip

(8) Γiε := {x ∈ Ω/d(x, ∂Ω) < ε}

where d(., .) is the usual distance in IRn.

For all t > O, set

M∗(t, ∂Ω) := lim
ε→0

sup ε−(n−t)|Γiε|;

the interior Bouligand-Minkowski dimension of ∂Ω, di
is given by:



di := inf{t > O/M∗(t, ∂Ω) < +∞} =

(9) n− lim inf
ε→0

Ln|Γiε|]
(Lnε)

;

Analoguously we can define de (exterior dimension) and

(10). d = max{di, de}

It is easy to verify that for a regular domain, the Bouligand-

Minkowski dimension of the boundary is n− 1.

This last dimension is often called ”box-counting di-

mension”, logarithmic dimension, Kolmogorov entropy

, . . . ..

It is often used since it can be computed easily by

counting the number of squares with side ε which are

intersected by the boundary, or the curve.



IV.4. Brossard-Carmona conjecture

In 1985, J.Brossard R.Carmona, [BC],exhibited a coun-

terexample to Berry’s conjecture; precisely they con-

structed a domain where h < di ≤ d. Therefore, they

suggested to replace h by d in (7), with d the Bouligand-

Minkowski dimension of the boundary; their conjecture

is:

(11)

N(λ) = W (λ,Ω)− γnL(∂Ω), λd/2 + o(λ)d/2, λ→ +∞



IV.5. A first estimate for the remainder term

In 1987, JF with M.Lapidus have shown that

(12), N(λ,Ω) = W (λ,Ω) +O(λd/2) , λ→ +∞

where d is the Bouligand-Minskowski dimension of the
boundary ∂Ω.

This estimate is obtained by using the ”Dirichlet-Neumann
bracketing” ( e.g. Courant-Hilbert, Reed-Simon)).
We consider a partition of Ω into cubes Qo with side
1; then a partition of the boundary which is left into
cubes with side 2−1;. . . . At the k-th step a boundary
strip is left; denote it by Bk. inside Bk again we can
put cubes Qk with side 2−k; denote by nk the number
of these cubes.

Obviously by ((8)) (definition of Γε),

Bk ⊆ Γ2−k
√
n := {x ∈ Ω/d(x, ∂Ω) < 2−k

√
n}.



Therefore,

(13) nk ≤ C2kd.

For λ fixed, N(λ,−∆, Qp) = 0 for p ∈ IN , large enough

that is Qp small enough. Assume that K ∈ IN is such

that for any integer p > K,N(λ,Qp) = 0 .

By use of ”Dirichlet- Neumann bracketing”, we get:

(14)
k=K∑
k=1

nkN(λ,Qk) ≤ N(λ,Ω) ≤

k=K∑
k=1

nkNN(λ,Qk) +NN(Bk),

whereNN(λ, ω) denotes the counting function for the

Neumann problem on ω. Combining Gauss formula in

IRn, estimates (13) and (14) as well as estimates for

the boundary strip Bk by Fleckinger-Métivier (1973) we

derive the result.



Finally Lapidus has shown that the estimates holds with

di when di 6= d.

(12), N(λ,Ω) = W (λ,Ω) +O(λdi/2) , λ→ +∞

where di is the interior Bouligand-Minskowski dimension

of the boundary ∂Ω.

(12) has been extended to more general problems by

several people (M. van den Berg, Chen Hua, Duplantier,

W.D.Evans, . . . ).



IV.6 THE SECOND TERM OSCILLATES .

As for smooth domains, it is then natural to try to get

a more precise estimate for the second term. Lapidus

has done several conjectures.

Bad news!!

Unfortunately, exactly as for smooth domains with sym-

metries, the second term can oscillate. This was con-

jectured by D.V.Vassiliev and we (JF+DV) could prove

it for various examples.

Indeed very often examples of ”fractals” are selfsimilar

curves or in any case iterations are involved. It plays

the role of symmetries as we will show on an example.



For these examples, the second term in (6) is not :

cnM(∂Ω)λdi/2

as hoped but is

cnM(∂Ω)λdi/2.p(lnλ)

where p is a periodic function, positive, bounded and

discontinuous.



An example Let s be a real fixed number such that

(13) 1 +
√

2 < s < 3.

Let Q be the open set constructed the following way :

Qo is the unit square;

one ”sticks” in the middle of its for sides 4 squares Q1

with side s−1;

on the 3× 4 = 12 sides with length s−1 we stick n2 =

4× 3 squares Q2 with side s−2; . . . .;

at the k-th step we stick in the middle of the sides with

length s−(k−1), nk = 3
43k squares Qk with side length

s−k . . . .





The open set Q is the union of all these squares. But it

is not connected. Its boundary has an interior Bouligand-

Minkowski dimension which is

(14) di = (Ln3)/(Lns).

We derive from (13)(1 +
√

2 < s < 3) and (14) that

1 < di < 2.

For this open set we can prove



Proposition 1. As λ→ +∞

N(λ,Q) = W (λ,Q)−

4

3
(
λ

π2
)di/2p2[

(Lnλ− 2Lnπ)

(2 ln s)
] +O(λ1/2)

with

(15)

p2(y) :=
k=+∞∑
k=−∞

3k−yρ2(sy−k); ρ2(r) =
π

4
r2 −N2(r),

where ρ2 is the remainder term in Gauss estimate:

N2(r) = #{p, q) ∈ N∗ ×N∗/p2 + q2 < r2}.

The function p2 is well defined; it is positive, bounded,

1-periodic and left continuous; moreover the set of dis-

continuities is dense in IR .



We derive a connected set from Q by doing small cuts

in the middle of each ∂Qk ∩ ∂Qk−1. We denote by O
this open connected set.

Theorem 1. As λ→ +∞

−
4

3
(λ/π2)di/2p2[(2 ln s)−1(lnλ− 2 lnπ)] +O(λ1/2) =

N(λ,Q)−W (λ,Q) ≤ N(λ,O)−W (λ,O) ≤

−
4

3
(λ/π2)di/2p2[(2 ln s)−1(lnλ−2 lnπ)+o(1)]+o(λdi/2).

Remark The p2 function appears naturally.

Sketch of the proof Since Q is the union of disjoint

cubes

(16) N(λ,Q) =
∞∑
k=0

nkN(λ,Qk).



⇒ N(λ,Q)−W (λ,Q) =
∞∑
k=0

nk[N(λ,Qk)−W (λ,Qk)]

=
∞∑

k=−∞
nk[N(λ,Qk)−W (λ,Qk)]−

−1∑
k=−∞

nk[N(λ,Qk)−W (λ,Qk)]

Set

(17) N(λ,Q)−W (λ,Q) = A+B

where

A :=
4

3

∞∑
k=−∞

3kρ2(λ1/2s−k/π)

B := −ρ2(λ1/2/π) +
4

3

0∑
k=−∞

3kρ2(λ1/2s−k/π).

We prove now that B is small compared to A.



Define y ∈ IR by

(18) sy =
√
λ/π, i.e y = 2(Lns)−1. [Lnλ− 2Lnπ] .

⇒ 3y = (
√
λ/π)di, hence

−1∑
k=−∞

3k−y
[
N2(sk−y)− πs2(y−k)/4

]
' O(

√
λ), λ→ +∞

so

(19) |B| ≤ γλ1/2.

The definition of A exhibit the periodicity. Combining

(17) to (19), we derive Proposition 1.

Analogously for Z(t), with M.Levitin and D.Vassiliev we

computed oscillating terms for the snowflake. (com-

puting of the Heat content)



IV.7 INVERSE PROBLEME

We consider now the inverse problem knowing the spec-

tral function, is it possible to deduce d or di?

This is of course important since it can help for example

in the detection of cracks...

We use the partition function and our result ([FV1-2])

is closed to the one of Brossard;Carmona)

Theorem 2. If Ω ⊂ IRn is a bounded domain its interior

Bouligand-Minkowski dimension di is such that:

(20) di ≥ −2 lim inf
Ln[|Ω|(4πt)−n/2 − Z(t,Ω)]

Lnt
.

If Ω is bounded in IR2 and if ∂Ω has only a finite

number of connected components then (20) is valid

with an equality.



These two conditions are necessary for having equality.

Its is possible to construct counterexamples by use of

the following remark:

If one extracts a sequence of points of the open set, the

spectrum does not change but the Bouligand-Minkowski

dimension of the boundary does.
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