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INTRODUCTION

Let Ω ⊂ R2 be an open set. Consider −∆ on Ω subject to Dirichlet boundary
conditions with discrete eigenvalues 0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . .
Define the trace of the heat kernel

Z(t) = Tr e+∆t =
∑
k∈N

exp (−λk t) , t > 0 .

We have two fundamental results:

M. KAC, 1951

Z(t) ≤ |Ω|
4πt

∀ t > 0

ASYMPTOTIC EXPANSION

Z(t) =
|Ω|
4πt
− |∂Ω|

4
√

4πt
+ O (1) as t→ 0+
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AUXILIARY RESULTS AND NOTATION

As a lower bound on the ground state λ1 one can always use

RAYLEIGH, FABER & KRAHN

λ̃ =
π j20,1
|Ω|

≤ λ1 , ( j0,1 : first zero of the Bessel-function J0 ) .

Assume a > 0 and define

Γ̂(a, s) =
1

Γ(a)

∫ ∞
s

e−t ta−1 dt .

Then we have the following asymptotic properties.

Γ̂(a, s) = 1− sa

a Γ(a)
+ O

(
sa+1) as s→ 0+

Γ̂(a, s) =
1

Γ(a)
(

sa−1 + O
(
sa−2) ) exp(−s) as s→∞
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THE MAIN RESULT

Here we consider the case of an arbitrary open set Ω ⊂ R2 with finite area and
get the following universal bound on Z(t).

THEOREM

For λ ∈ [λ̃, λ1] and all t > 0 the bound

Z(t) ≤ |Ω|
4πt

Γ̂
(

9
2
, λt
)
− (R(t, λ))+

holds with a remainder term

R(t) =

√
|Ω|√
4πt

32
35
√
π

Γ̂ (4, λt)−
√

4πt√
|Ω|

π
3
2

105
Γ̂ (6, λt) .

With λ = λ̃ the bound depends only on t and |Ω|.
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EIGENVALUE MEANS

We use upper bounds on the eigenvalue means

Rσ(Λ) = Tr (−∆− Λ)σ− =
∑

k

(Λ− λk)
σ
+ .

BEREZIN, 1972
For σ ≥ 1 and all Λ > 0

Rσ(Λ) ≤ Lcl
σ,2 |Ω| Λσ+1 .

The eigenvalue means are connected with the heat kernel via the Laplace
transformation L[f ](t) =

∫∞
0 e−Λt f (Λ) dΛ :

Z(t) =
tσ+1

Γ(σ + 1)
L[Rσ](t) , σ ≥ 1 .

In this way the Berezin inequality implies Kac’ inequality.
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IMPROVED BEREZIN INEQUALITIES

To state a refined bound choose a coordinate system (x1, x2) ⊂ R2. Define

l (x1) = |{x2 : (x1, x2) ∈ Ω}| and m(τ) = |{x1 : l (x1) > τ}| .

Then we have
∫∞

0 m(τ)dτ = |Ω|.

PROPOSITION

For σ ≥ 5/2 and all Λ > 0

Rσ(Λ) ≤ Lcl
σ,2

∫ ∞
π√
Λ

m(τ) dτ Λσ+1 .

From this result one can deduce improvements of the Kac inequality via the
Laplace transformation. But these improvements still depend on m(τ).
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AN ISOPERIMETRIC INEQUALITY

J. M. LUTTINGER, 1973
For all t > 0

Z(t,Ω) ≤ Z(t,B) , (1)

where B ⊂ R2 is the circle with |B| = |Ω|.

Conclusion:
• Calculate m(τ) for the circle B.
• Use the improved Berezin inequality to estimate Rσ for B.
• Apply the Laplace transformation and use (1) to deduce universal bounds

on Z(t).
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FURTHER APPLICATIONS

• Sharp upper bounds on Z(t) and Rσ(Λ) in domains with infinite volume as
long as ∫ ∞

π√
Λ

m(τ) dτ < ∞

for all Λ > 0.

• Universal upper bounds on Rσ(Λ) for σ ≥ 3/2 with order-sharp correction
terms.

• Improved upper bounds with correction terms depending on properties of
the boundary.

• Corollary: For all t > 0 we have

Z(t) ≤ |Ω|
4πt

exp
(
− t
|Ω|

)
.
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