Torsional rigidity and Euclidean moment of inertia

Dinara Giniyatova

25 May 2010

Torsional rigidity for elastic beams

- Let $\Omega \subset \mathbb{C}$ be a simply connected domain
- $\partial \Omega$ is the boundary of Ω
- $R(z,\Omega)$ is the conformal radius of Ω at the point z=x+iy
- $\rho(z,\Omega)$ is the distance from z to $\partial\Omega$

Torsional rigidity for elastic beams

Let $\Omega \subset \mathbb{C}$ be a simply connected domain

 $\partial \Omega$ is the boundary of Ω

 $R(z,\Omega)$ is the conformal radius of Ω at the point z = x + iy

 $\rho(z,\Omega)$ is the distance from z to $\partial\Omega$

[Saint-Venant, 1847]

$$P(\Omega) = 2 \iint_{\Omega} v(x, y) \, dx dy,$$

here v(x, y) is the solution of the Dirichlet problem for the Poisson equation $\Delta v = -2$, $v|_{\partial\Omega} = 0$.

Dinara Giniyatova

Euclidean and conformal moments of inertia

$$I(\partial \Omega) = \iint_{\Omega} \rho^{2}(z, \Omega) \, dx dy$$
$$I_{c}(\Omega) = \iint_{\Omega} R^{2}(z, \Omega) \, dx dy$$

Euclidean and conformal moments of inertia

$$I(\partial \Omega) = \iint_{\Omega} \rho^{2}(z, \Omega) \, dx dy$$
$$I_{c}(\Omega) = \iint_{\Omega} R^{2}(z, \Omega) \, dx dy$$

$$\rho(z,\Omega) \le R(z,\Omega) \le 4\rho(z,\Omega) \tag{1}$$

Dinara Giniyatova

[Avkhadiev,F.G. Solution of the generalized Saint Venant problem Mat. Sb., 1998, **189**(12), 3–12]

Theorem

For simply connected domains $\Omega \subset \mathbb{C}$

 $P(\Omega) \sim I(\partial \Omega) \sim I_c(\Omega)$

rather, the following chain of inequalities is valid:

 $I(\partial \Omega) \le I_c(\Omega) \le P(\Omega) \le 4I_c(\Omega) \le 64I(\partial \Omega)$ (2)

Dinara Giniyatova

For convex domains

$$P(\Omega) < 4I(\partial\Omega) \tag{3}$$

What about other domains?

For convex domains

$$P(\Omega) < 4I(\partial\Omega) \tag{3}$$

What about other domains?

Kovalev, L.V. (2002)

It is not true!

$$\frac{P(\Omega)}{I(\partial\Omega)} > 4$$

Dinara Giniyatova

Theorem

There exists the simply connected domain $\Omega\subset\mathbb{C}$ for which $P(\Omega)/I(\partial\Omega)>4.08$

Sector of radius $a \ (\alpha > \pi)$

$$I(\partial\Omega) = \frac{a^4}{360}(15(\alpha + \pi) - 64)$$

Dinara Giniyatova

Torsional rigidity for an arbitrary sector

$$P(\Omega) = a^{4} \left\{ \frac{\pi\lambda}{2} - \frac{1}{\pi} \left[\psi \left(\frac{1}{2} + 2\lambda \right) - \psi \left(\frac{1}{2} \right) - \lambda \psi' \left(\frac{1}{2} + 2\lambda \right) \right] \right\}$$
$$\alpha = 2\pi\lambda, \quad \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

Torsional rigidity for an arbitrary sector

$$P(\Omega) = a^{4} \left\{ \frac{\pi\lambda}{2} - \frac{1}{\pi} \left[\psi \left(\frac{1}{2} + 2\lambda \right) - \psi \left(\frac{1}{2} \right) - \lambda \psi' \left(\frac{1}{2} + 2\lambda \right) \right] \right\}$$
$$\alpha = 2\pi\lambda, \quad \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

 $\alpha > \alpha^* \approx 1,81948\pi (\approx 327,5^\circ)$

Dinara Giniyatova

Thank you for your attention!