Torsional rigidity and Euclidean moment of inertia

Dinara Giniyatova

25 May 2010

Torsional rigidity for elastic beams

Let $\Omega \subset \mathbb{C}$ be a simply connected domain $\partial \Omega$ is the boundary of Ω $R(z, \Omega)$ is the conformal radius of Ω at the point $z=x+i y$ $\rho(z, \Omega)$ is the distance from z to $\partial \Omega$

Torsional rigidity for elastic beams

Let $\Omega \subset \mathbb{C}$ be a simply connected domain
$\partial \Omega$ is the boundary of Ω
$R(z, \Omega)$ is the conformal radius of Ω at the point $z=x+i y$ $\rho(z, \Omega)$ is the distance from z to $\partial \Omega$
[Saint-Venant, 1847]

$$
P(\Omega)=2 \iint_{\Omega} v(x, y) d x d y,
$$

here $v(x, y)$ is the solution of the Dirichlet problem for the Poisson equation $\Delta v=-2,\left.\quad v\right|_{\partial \Omega}=0$.

Euclidean and conformal moments of inertia

$$
\begin{aligned}
& I(\partial \Omega)=\iint_{\Omega} \rho^{2}(z, \Omega) d x d y \\
& I_{c}(\Omega)=\iint_{\Omega} R^{2}(z, \Omega) d x d y
\end{aligned}
$$

Euclidean and conformal moments of inertia

$$
\begin{aligned}
& I(\partial \Omega)=\iint_{\Omega} \rho^{2}(z, \Omega) d x d y \\
& I_{c}(\Omega)=\iint_{\Omega} R^{2}(z, \Omega) d x d y
\end{aligned}
$$

$$
\begin{equation*}
\rho(z, \Omega) \leq R(z, \Omega) \leq 4 \rho(z, \Omega) \tag{1}
\end{equation*}
$$

[Avkhadiev,F.G. Solution of the generalized Saint Venant problem Mat. Sb., 1998, 189(12), 3-12]

Theorem

For simply connected domains $\Omega \subset \mathbb{C}$

$$
P(\Omega) \sim I(\partial \Omega) \sim I_{c}(\Omega)
$$

rather, the following chain of inequalities is valid:

$$
\begin{equation*}
I(\partial \Omega) \leq I_{c}(\Omega) \leq P(\Omega) \leq 4 I_{c}(\Omega) \leq 64 I(\partial \Omega) \tag{2}
\end{equation*}
$$

For convex domains

$$
\begin{equation*}
P(\Omega)<4 I(\partial \Omega) \tag{3}
\end{equation*}
$$

What about other domains?

For convex domains

$$
\begin{equation*}
P(\Omega)<4 I(\partial \Omega) \tag{3}
\end{equation*}
$$

What about other domains?
Kovalev, L.V. (2002)
It is not true!

$$
\frac{P(\Omega)}{I(\partial \Omega)}>4
$$

Theorem

There exists the simply connected domain $\Omega \subset \mathbb{C}$ for which $P(\Omega) / I(\partial \Omega)>4.08$

Sector of radius $a(\alpha>\pi)$

Torsional rigidity for an arbitrary sector

$$
\begin{gathered}
P(\Omega)= \\
a^{4}\left\{\frac{\pi \lambda}{2}-\frac{1}{\pi}\left[\psi\left(\frac{1}{2}+2 \lambda\right)-\psi\left(\frac{1}{2}\right)-\lambda \psi^{\prime}\left(\frac{1}{2}+2 \lambda\right)\right]\right\} \\
\alpha=2 \pi \lambda, \quad \psi(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}
\end{gathered}
$$

Torsional rigidity for an arbitrary sector

$$
\begin{gathered}
P(\Omega)= \\
a^{4}\left\{\frac{\pi \lambda}{2}-\frac{1}{\pi}\left[\psi\left(\frac{1}{2}+2 \lambda\right)-\psi\left(\frac{1}{2}\right)-\lambda \psi^{\prime}\left(\frac{1}{2}+2 \lambda\right)\right]\right\} \\
\alpha=2 \pi \lambda, \quad \psi(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)} \\
\alpha>\alpha^{*} \approx 1,81948 \pi\left(\approx 327,5^{\circ}\right)
\end{gathered}
$$

Thank you for your attention!

