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For the trial function ϕ let’s choose one of the 
Cartesian coordinates x,y,z on S2, but “pull back” to Ω 
with the inverse of Hersch’s conformal transformation.  
Let the resulting functions on Ω be called X,Y,Z.  What 
do we know about X,Y,Z?     
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   Let’s choose the trial function in

as  ζ =X, Y, or Z.  Considering for example X, conformality implies 
that  
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Observing that

:

⇒

Equality iff sphere.  Why?
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*  If g=1/4, this corresponds to a thin-shell quantum resonator. 













But this is not true for g > 1, and it is not very 
clear what happens between ¼ and 1! 



The conjecture is that there is a 
bifurcation at g=1, below which the 
circle is always the optimizer.  (Remains open, 
some progress by Linde, Proc. AMS 2006.)   
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The only assumptions are that H and G are self-adjoint, 
and that the eigenfunctions are a complete orthonormal 
sequence.
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When does this side have a sign? 



1.  There is an exact identity involving traces 
including [G, [H, G]] and [H,G]*[H,G].

2.  For the lower part of the spectrum it implies an 
inequality of the form:

      ∑ (z – λk)2 (...)    ≤    ∑ (z – λk) (...) 

What you should remember about trace 
formulae/sum rules in a short seminar? 



    A good choice of G for the 
Laplacian is a coordinate function, 
because 
a)  [H,G] = - 2 ∂/∂xk, and
b)  [G, [H, G]] = 2



 • A good choice of G = xk, a Euclidean coordinate 
from Rd restricted to the submanifold.

 • There are messy terms, but when you sum the trace 
identity over k = 1...d, magical cancellations occur.

 • Since there are second derivatives of xk, there is a 
curvature contribution that doesn’t go away.
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Fact:

F
1

1 + x2
=

1

2
e−|k|

Therefore, if f = g = 1
1+x2 , then

f̂ 2 =
1

4
√

2π

∫ infty

−∞
e−|$|−|k−$|d'.

For simplicity, suppose k > 0.
1

(
∂2

∂θ2
∂
∂θ

1
sin θ

∂
∂φ

∂
∂θ

1
sin θ

∂
∂φ cot θ ∂

∂θ + 1
sin2 θ

∂2

∂φ2

)

∑
(z − λk)

2
+ ≤

4

d

∑
(z − λk)+Tk,

R(ζ) :=

∫
Ω |∇ζ|2dS − g

∫
Ω κ1κ2|ζ|2dS∫

Ω |ζ|2dS

V =
−2a2

cosh2(ax)
χloop

φ =
cosh(aL)

cosh(ax)
resp. e−ax

λ1 = −a2 solves a transcendental equation, but
|λ1|σR

|V |σ+1/2 is exactly determined!

1



Special case:  z = λ2.
(

∂2

∂θ2
∂
∂θ

1
sin θ

∂
∂φ

∂
∂θ

1
sin θ

∂
∂φ cot θ ∂

∂θ + 1
sin2 θ

∂2

∂φ2

)

(λ2 − λ1)
2 ≤ 4

d
(λ2 − λ1)λ1 +

‖h‖2
∞

4

R(ζ) :=

∫
Ω |∇ζ|2dS − g

∫
Ω κ1κ2|ζ|2dS∫

Ω |ζ|2dS

V =
−2a2

cosh2(ax)
χloop

φ =
cosh(aL)

cosh(ax)
resp. e−ax

λ1 = −a2 solves a transcendental equation, but
|λ1|σR

|V |σ+1/2 is exactly determined!

1



Sum rules imply universal bounds on eigenvalue gaps for 
Schrödinger operators on closed submanifolds in terms of 
the lower spectrum.  Let

Let δ := supM
(
P

κj)2

4 − V (x). Then the simplest consequence of the sum
rule is:

λ2 − λ1 ≤
4

d
(λ1 + δ)

Hg := −∆ + g

(
∑

j

κj

)2

V =
−2a2

cosh2(ax)
χloop

φ =
cosh(aL)

cosh(ax)
resp. e−ax

λ1 = −a2 solves a transcendental equation, but
|λ1|σR

|V |σ+1/2 is exactly determined!

1



Sum rules imply universal bounds on eigenvalue gaps for 
Schrödinger operators on closed submanifolds in terms of 
the lower spectrum.  Let

Let δ := supM
(
P

κj)2

4 − V (x). Then the simplest consequence of the sum
rule is:

λ2 − λ1 ≤
4

d
(λ1 + δ)

Hg := −∆ + g

(
∑

j

κj

)2

V =
−2a2

cosh2(ax)
χloop

φ =
cosh(aL)

cosh(ax)
resp. e−ax

λ1 = −a2 solves a transcendental equation, but
|λ1|σR

|V |σ+1/2 is exactly determined!

1



Sum rules imply universal bounds on eigenvalue gaps for 
Schrödinger operators on closed submanifolds in terms of 
the lower spectrum.  Let

Let δ := supM
(
P

κj)2

4 − V (x). Then the simplest consequence of the sum
rule is:

λ2 − λ1 ≤
4

d
(λ1 + δ)

Hg := −∆ + g

(
∑

j

κj

)2

V =
−2a2

cosh2(ax)
χloop

φ =
cosh(aL)

cosh(ax)
resp. e−ax

λ1 = −a2 solves a transcendental equation, but
|λ1|σR

|V |σ+1/2 is exactly determined!

1

Let δ := supM
(
P

κj)2

4 − V (x). Then the simplest consequence of the sum
rule is:

λ2 − λ1 ≤
4

d
(λ1 + δ)

Hg := −∆ + g

(
∑

j

κj

)2

V =
−2a2

cosh2(ax)
χloop

φ =
cosh(aL)

cosh(ax)
resp. e−ax

λ1 = −a2 solves a transcendental equation, but
|λ1|σR

|V |σ+1/2 is exactly determined!

1

Simplest case is



Put a soliton potential on the loop:
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Maximal gaps occur for the sphere.  The sphere has 
degeneracies, but every one of its gaps is maximal 
from the point of view of sum rules.
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with
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)
λn

)2

−
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This bound is sharp for every non–zero eigenvalue gap of H 1
4

on the
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from the preceding Corollary,
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and to substitute from (4.2). (Cf. [16], Proposition 6; the bound b) is in fact
identical in form to the one in that article.)

An explicit calculation shows that the bound is sharp for the non-zero
eigenvalue gaps of the sphere, for which all the eigenvalues are known and
elementary [20]: For simplicity, assume that d = 2, g = 1

4 , and that M is the
sphere of radius 1 embedded in R3. Then h = 2,σ = 1, and:

λ1 = 1;λ2 = λ3 = λ4 = 3; . . . ;λ(m−1)2+1 = · · · = λm2 = m2 −m + 1.

For n = m2, the calculation shows that λn = n+1
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bound 2λm2 + m.

q.e.d.
Finally, consider the partition function for H,

Z(t) := tr(exp(−tH)),

If the function f of Proposition 4.1 is chosen as f(x) := exp(−tx), then
(after a short calculation exactly as for Eq. (15) of [16]):
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which implies the following bounds:





     `You may seek it with trial 
functions---and seek it with care; 
            You may hunt it with 
rearrangements and hope; 
       You may perturb the boundary 
with a lump here and there; 
            You may fool it with some 
algebraic rope-a-dope---’

Apologies to Lewis Carroll. 



The image of Dido founding Carthage by Mathäus Merian the Elder (1593-1650) is in the public 
domain, according to:

http://commons.wikimedia.org/wiki/
File:Dido_purchases_Land_for_the_Foundation_of_Carthage.jpg.

One background picture is from the manuscript of the 11th Century يKitāb Gharāʾib al-funūn wa-
mulaḥ al-ʿuyūn, or Book of Curiosities, reproduced with permission of the  Bodleian Library, 
University of Oxford MS Arab c.90 (folio #2b-3a)

Photographs (c) Evans M. Harrell II, 2010.


