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Background picture “Diagram of the Universe” (c¢) Bodleian Library, University of Oxford MS Arab c.90 folio #2b-3a




§ 32. ELEVEN PROPERTIES OF THE SPHERE 215

> : § 32. Eleven Properties of the Sphere

We have already become acquainted with the surfaces of vanish-
ing Gaussian curvature. We shall now look for the surfaces of con-
stant positive or negative curvature, By far the simplest and most
: 2 important surface of this type is the sphere. A thorough study of

N . : Iy the sphere would in itself provide sufficient material for a whole
book. We shall here present only eleven properties that have a par-
ticularly strong appeal to the visual intuition. We shall at the same
time become acquainted with several properties that are of import-
ance not only for the geometry of the sphere but also for the general
theory of surfaces. With regard to each property to be described
we shall inquire whether it defines the sphere uniquely or whether
there are other surfaces having the given property.

1. The points of a sphere are equidistant from a fized point.

» P )
) : 'S Also, the ratio of the distances of its points from two fixed points
r o “. ' is constant.

: The first of these two properties constitutes the elem:ntary defini-
"~ Eri tion of the sphere and consequently defines the sphere uniquely. The

-
~ . fact that the sphere has the second property as well, can be ascer-
s a ma o tained very easily by analytical metheds. On the other hand, the
r‘ - ‘ - . . . g . -
: For, a plane is obtained if, and only if, the constant ratio is equal
}

second property defines not only the sphere but the plane as well.
- ! 5 to unity. The plane obtained in this case is the plane of symmetry
ym o . of the two fixed points.
: . y

. ~ ool 2. The contours and the plane sections of the sphere are circles.

In the discussion of the second-order surfaces we mentioned the

, theorem that all the plane sections and contours of such surfaces

B o : are conics. In the case of a sphere, all these conics are circles. This

4 A , » property defines the sphere uniquely. From the observation that

' L ' the shadow of the earth at a lunar eclipse is always a circle we may
’ therefore infer that the earth is spherical.

3. The sphere has constant width and constant girth.
: The term constant width denotes the property, of a solid, that
 Hilbert and C Ohh-VO ssen, the distance between any pair of parallel tangent planes is constant.

Thus a sphere can be rolled arbitrarily between two parallel tangent
§ : 7 Planes. It would seem plausible that the sphere is uniquely defined by
- " Geom eﬂy an d the Imag ination this property. In actual fact, however, there are numerous other
-8 ‘ : closed convex surfaces, some of them without any singularities, whose

28 .o



o ctem defined by E. In this process, it ig
wwﬁm hyperbola as a lifn{ting case of a
b merboloid and to count all the straight lines meeting the hyperbola
B :;‘.”v.;g .nts to this degenerate surface. ';‘hg focal hyperbola inter-
 Sts E in the four umbilical points. A limiting process applied to
| o argument shows that the family of geodesic l"‘?‘ of E
belonging to the focal hyperbola consists of all those geodesics that
pass through an umbilical point of E, and only of those.-". Further-
more, it is found that every geodesic line thro.ugh an ':lr.nblhca.l point
also passes through the diametrically opposnt:.e umbl.hcal point.

On the sphere, all the geodesics through a given point P also pass
through a second fixed point, the point diametrically opposite P,
The behavior of the geodesic lines passing through an umbilical
point of the ellipsoid is analogous to this property. On the other
hand, it can be proved that the geodesics through any other fixed
point of the ellipsoid do not all have a second point in common.

It is natural to ask whether the sphere is the only surface on
which all thz geodzsic lines emanating from: an arbitrary fixed
point bave 2 second point in common. The answer o this question
has not yet been found.

7. Of all solids having a given volume, the sphere is the one
FLaving the smallest surface area; of all solids having a given
surface area, the sphere is the one having the greatest voluwme.

These two properties (each of which implies the other) define
the sphere uniquely. The proof of this fact leads to a problem of
the calculus of variations and is extremely laborious. But a simple
experimental proof is implicit in every freely floating soap bubble.
As was mentioned earlier in connection with the minimal surfaces,
the soap bubble, by virtue of its surface tension, seeks to reduce its
surface area to a minimum; and since the bubble encloses a fixed
volume of air, it follows that the bubble assumes the minimum
surface area fox: a fixed volume. But it is found by observation

k‘,h%:mely .ﬂ°at"‘8 Soap bubbles are always spherical unless they
N\ K %ecmbly subjected to the influence of gravity becanse of
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3. Consider the Laplace-Beltrami operator on a
smooth closed manifold immersed in R*'. The
lowest eigenvalue is always 0, but the first
nontrivial eigenvalue depends on the geometry.

d
By Reilly’s inequality, with R Z &

k1

- hl2

d
Equality is attained by the sphere (for which
h=d.) Recent generalization to sums of
eigenvalues by llias-Makhoul.




4. Now consider the Laplace-Beltrami operator
on a closed manifold in 2D, of fixed surface area,
and of the topological type of the sphere. The
.- first positive eigenvalue is maximizedby the
sphere. (. versch, crAS 1970)
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5. Subtract Gauss curvature from the Laplace-
Beltrami operator on a closed manifold in 2D.
The second eigenvalue is still maximized by the

sphere (warrell, 10GA 1996)«

For the trial function ¢ let’s choose one of the
Cartesian coordinates x,y,z on S2, but “pull back” to Q
with the inverse of Hersch’s conformal transformation.
Let the resulting functions on Q) be:'called X,Y,Z. What
do we know about X,Y,Z?



5. Subtract Gauss curvature from the Laplace-
Beltrami operator on a closed manifold in 2D.
The second eigenvalue is still maximized by the

sphere.

For the trial function ¢ let’s choose one of the
Cartesian coordinates x,y,z on S2, but “pull back” to Q
with the inverse of Hersch’s conformal transformation.
Let the resulting functions on Q) be:'called X,Y,Z. What
do we know about X,Y,Z?

1. The functions X,Y,Z are orthogonal, because the functions x,y,z
are arthogonal on $2.

* Note: The restrictions of x,y,z to S* are the spherical harmeonics =
eigenfunctions:

"VZX=2X,
-Viy =2y,
-V?z2=232,



5. Subtract Gauss curvature from the Laplace-
Beltrami operator on a closed manifold in 2D.
The second eigenvalue is still maximized by the

sphere.

For the trial function ¢ let’s choose one of the
Cartesian coordinates x,y,z on S2, but “pull back” to Q
with the inverse of Hersch’s conformal transformation.
Let the resulting functions on Q) be:'called X,Y,Z. What
do we know about X,Y,Z?

1. The functions X,Y,Z are orthogonal to one another and also to p =
the first eigenfunction.

2. X+¥V+22=1,becausex*+y*+2%=1.



5. Add a multiple of Gauss curvature from the
Laplace-Beltrami operator on a closed manifold
in 2D. The second eigenvalue is still maximized

by the sphere.

For the trial function ¢ let’s choose one of the
Cartesian coordinates x,y,z on S2, but “pull back” to Q
with the inverse of Hersch’s conformal transformation.

Let the resulting functions on Q) be:'called X,Y,Z. What
do we know about X,Y,Z?

1. The functions X,Y,Z are orthogonal.
2. X2+Y?+22=1,because x> +y*+22=1.
3. = ldentifying now p with u,,
R /S xp(®71(x))Jd5 = 0. Likewise for ;2.
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9. In one dimension, with the other sign, the
fundamental eigenvalue is minimized by the
circle for 0 < g < 1/4.

- d?/ds* + g K7,
The conjecture 1s that there 1s a

bifurcation at g=1, below which the

circle 1s always the Optimizer. (Remains open,
some progress by Linde, Proc. AMS 2006.)
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1. The natural Schrédinger operator on a
manifold from the point of view of sum rules:

-Ag*q,

where

1
x) = Z,@,



Commutators of

operators
[G, [H, G]] =2 GHG - G?H - HG?
Etc., etc. Typical consequence:

(03, |G, [H.Gl]¢5) = > (h — )Gy’

KAk #\;

(Abstract version of Bethe’s sum rule)






15t and 2™ commutators

% Y PG, [H, Gllgs d5) = Y (= = X)IIH, Gl

ST N = Az = M)k = A)| (G, i P

A €J Ap€J®

WKM«M%MM@@W?
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“You may.seek it with trial

functions-=-and:seek it with care;

You may hunt it with
rearrangements and hope;

You may perturb the boundary

with a lump here and there;

You may fool it with some
algebraic rope-a-dope--=’

JI&.’ &






