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Introduction

N

n this talk, we consider the class T

K = {K C R?: K convex set}

with various other constraints.

We are interested in minimization (or maximization)

problems on various subsets of the class K whose solutions
are singular, actually polygons.

o -
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Example 1: the farthest convex set

-

We consider the class

=

A={K c R% K convex set , P(K) = 2r,s(K) = O}

where P(K') denotes the perimeter of K and s(K) its
Steiner point.



Example 1: the farthest convex set
w

e consider the class T
A={K c R% K convex set , P(K) = 2r,s(K) = O}

where P(K') denotes the perimeter of K and s(K) its
Steiner point.

A Is convex for the Minkowski sum, compact for the

Hausdorff or the L2 distance. We want to describe the
"boundary" of A.
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Example 1: the farthest convex set
w

e consider the class T
A={K c R% K convex set , P(K) = 2r,s(K) = O}
where P(K') denotes the perimeter of K and s(K) its

Steiner point.

A Is convex for the Minkowski sum, compact for the

Hausdorff or the L2 distance. We want to describe the
"boundary" of A.

More precisely, we want to answer the following

Question 1: Let C be given in A, what is the farthest convex
set K¢ such that d( K¢, C) = maxge g4 d(K,C).

o -
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Example 2: a geometric problem

-

Let D, and D, be the disks, centered at O of radius a, b. Let
B betheclass B ={D, C K C Dy, K convex}.
Let o > 0 be given. We want to minimize

=

Jo(K) =a|K|—- P(K).
Question 2: What is the solution for any «?

D,

o -
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Example 3: the first eigenvalue

-

Let A\;(€2) denotes the first eigenvalue of the Laplace
operator on the bounded open set €2, with Dirichlet
boundary conditions.

=

o -
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Example 3: the first eigenvalue

fLet A1(€2) denotes the first eigenvalue of the Laplace T
operator on the bounded open set €2, with Dirichlet
boundary conditions.

The problem min{\{(£2), |2| = V,} has a well-known
solution: the ball of area ;. But what about the
maximization problem?
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Example 3: the first eigenvalue

. .

Let A\;(€2) denotes the first eigenvalue of the Laplace
operator on the bounded open set €2, with Dirichlet
boundary conditions.

The problem min{\{(£2), |2| = V,} has a well-known
solution: the ball of area ;. But what about the
maximization problem?

Of course, sup{\1(92), | = Wy} = +o0.
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Example 3: the first eigenvalue

. .

Let A\;(€2) denotes the first eigenvalue of the Laplace
operator on the bounded open set €2, with Dirichlet
boundary conditions.

The problem min{\{(£2), |2| = V,} has a well-known
solution: the ball of area ;. But what about the
maximization problem?

Of course, sup{\1(92), | = Wy} = +o0.

The problem max{\;(£2),2 convex , |Q2| = Vg, P(2) > Py} IS
well-posed.

Question 3: What is the maximizer of the first eigenvalue
among convex domains with perimeter and area
constraints?

o -
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Example 4: the Mahler conjecture

=

fLet K be a symmetric convex body and K° its polar body:
K° ={¢&|x.£| < 1,Vx € K}. The Mahler volume is
M(K) = |K||K*°|. Itis invariant by affine transformation.

o -
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Example 4: the Mahler conjecture

=

fLet K be a symmetric convex body and K° its polar body:
K° ={¢&|x.£| < 1,Vx € K}. The Mahler volume is
M(K) = |K||K*°|. Itis invariant by affine transformation.

What are the convex bodies which maximize and minimize
the Mahler volume?

Maximizers are the balls (and ellipses) M (K) < M(B)
(Santalo 1949).
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Example 4: the Mahler conjecture

=

fLet K be a symmetric convex body and K° its polar body:
K° ={¢&|x.£| < 1,Vx € K}. The Mahler volume is
M(K) = |K||K*°|. Itis invariant by affine transformation.

What are the convex bodies which maximize and minimize
the Mahler volume?

Maximizers are the balls (and ellipses) M (K) < M(B)
(Santalo 1949).

Question 4: What are the minimizers of the Mahler volume?

In 2D, it is the square (Mahler). In higher dimensions, it is a
famous conjecture: it should be the cube (Difficult question:
see T. Tao’s blog).

o -
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A geometric approach

o .

Classical fact: If we maximize a strictly convex function over
a convex domain A4, the maximum is attained at extreme
points of A.

o -
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A geometric approach
B -

Classical fact: If we maximize a strictly convex function over

a convex domain A4, the maximum is attained at extreme
points of A.

For domains, convexity or concavity properties are known
as Brunn-Minkowski inequalities. For example, in the plane,

[K|1/% or \1(Q)~1/2 are strictly concave:

(1 — ) Ko+ tKq|Y? > (1 — )| Ko|"/? + t| K1 |2

with equality iff Ky, K1 are homothetic.

o -
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Indecomposabillity

-

Definition K is indecomposable (in M) if
K = (1 — t)K() + t K4 (Wlth Ko, K1 € ./\/l)

iImplies Ky, K; are homothetic to K.

o -
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Indecomposabillity

-

Definition K is indecomposable (in M) if
K = (1 — t)K() + t K4 (Wlth Ko, K1 € ./\/l)
iImplies Ky, K; are homothetic to K.

Theorem In R?, the indecomposable convex sets are the
triangles and the segments.
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Indecomposabillity

- .

efinition K is indecomposable (in M) if
K = (1 — t)K() + tKq (with Ky, K1 € M)
iImplies Ky, K; are homothetic to K.

Theorem In R?, the indecomposable convex sets are the
triangles and the segments.

Corollary Any maximizer of a strictly convex functional in
the plane is a segment or a triangle.
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Indecomposability

- .

efinition K is indecomposable (in M) if
K = (1 — t)K() + tKq (with Ky, K1 € M)
iImplies Ky, K; are homothetic to K.

Theorem In R?, the indecomposable convex sets are the
triangles and the segments.

Corollary Any maximizer of a strictly convex functional in
the plane is a segment or a triangle.

Example Minimizers of the logarithm capacity in R? among
convex sets of given perimeter are triangles or segments.

o -
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The support function(1)

fLet K be a plane convex set.
The support function hx of K is defined by:

hic(0) == max{z-¢¥ 2 € K}.



The support function(1)

fLet K be a plane convex set.
The support function hx of K is defined by:

hic(0) == max{z-¢¥ 2 € K}.

The perimeter P(K) of the convex set is given by:

P(K) = /O " ke (0) do.

o -
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The support function(1)

fLet K be a plane convex set.
The support function hx of K is defined by:

hic(0) = max{z-e? :z € K}.
The perimeter P(K) of the convex set is given by:
27
zqu/ hic(6) o
0

The Steiner point s(K) of the convex set is defined by:

2T
4@:14 hic(0)ei? do

o -
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The support function(2)
-

The support function gives an easy characterization of
convex sets:

=

K is aconvex set <= h; + hy is a positive measure

o -
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The support function(2)
-

The support function gives an easy characterization of
convex sets:

=

K is a convex set <= I} + hx is a positive measure

The polygons are also well characterized

Kisapolygon <= hf +hg =Y a;,
j=1

where a1, a9, ...,a, and 61,0, ...,6, denote the lengths of
the sides and the angles of the corresponding outer
normals.

o -
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Support function and distances

-

The Hausdorff distance can be defined using the support
functions:

=

d (K, L) = |[[hg — hilloc.

We can also define a L? distance (Mc Clure and Vitale) by

2T
do(K, L) := (/ hi — hd%l@)
0

1/2

o -
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The farthest convex set %)

-

(Joint work with Evans Harrell)
Theorem Let J be a functional defined by

=

27
J(K) ::/O a3y +bhh” + chy + d iy df

(example the L2 distance: J(K) = ["(hx — ho)? df). Then
every local maximizer of the functional J within the class A
IS either a segment or a triangle.

o -
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The farthest convex set %)

-

(Joint work with Evans Harrell)
Theorem Let J be a functional defined by

=

27
J(K) ::/O a3y +bhh” + chy + d iy df

(example the L2 distance: J(K) = ["(hx — ho)? df). Then
every local maximizer of the functional J within the class A
IS either a segment or a triangle.

Proof: Use indecomposability!
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The farthest convex set %)

o .

(Joint work with Evans Harrell)
Theorem Let J be a functional defined by

27
J(K) ::/O a3y +bhh” + chy + d iy df

(example the L2 distance: J(K) = ["(hx — ho)? df). Then
every local maximizer of the functional J within the class A
IS either a segment or a triangle.

Proof: Use indecomposability!

Corollary The farthest convex set for the L? distance is
either a segment or a triangle.
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The farthest convex set %)

o .

(Joint work with Evans Harrell)
Theorem Let J be a functional defined by

27
J(K) ::/O a3y +bhh” + chy + d iy df

(example the L2 distance: J(K) = ["(hx — ho)? df). Then
every local maximizer of the functional J within the class A
IS either a segment or a triangle.

Proof: Use indecomposability!

Corollary The farthest convex set for the L? distance is
either a segment or a triangle.

LActuaIIy, we can prove that it is a segment J

Carthage Mav. 2010 — p. 12/2



The farthest convex set (Hausdorff)

- .

Theorem [farthest convex set for Hausdorff distance]
If C'Is a given convex set in the class A, then the convex set
K for which

dH(O, Ko) = max{dH(C’, K) K € .A}

IS a segment.

-
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Ingredient: a geometric inequality

-

Theorem Let K be any plane convex set with its Steiner
point at the origin. Then

=

P(K
max hr < % < minhy + max hy,

where both inequalities are sharp and saturated by any line
segment.

o -

Carthage Mav. 2010 — p. 14/2



Ingredient: a geometric inequality

-

Theorem Let K be any plane convex set with its Steiner
point at the origin. Then

=

P(K
max hr < % < minhy + max hp,

where both inequalities are sharp and saturated by any line
segment.

The first inequality is due to P. Mc Mullen. It implies that the
diameter of A is less than 7 /2.

o -
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Maximizing \;
fWe recall that we want to solve

max{A1(€2),2 convex , |Q| > Vg, P(?) = Py}

o -
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Maximizing \;

W .

e recall that we want to solve

max{A1(€2),2 convex , |Q| > Vg, P(?) = Py}

The class C = {2 convex , [Q2| > Vj, P(2) = Py} Is convex for
the Minkowski sum (Brunn-Minkowski inequality for the
volume)

o -
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Maximizing \;

W .

e recall that we want to solve

max{A1(€2),2 convex , |Q| > Vg, P(?) = Py}

The class C = {2 convex , [Q2| > Vj, P(2) = Py} Is convex for
the Minkowski sum (Brunn-Minkowski inequality for the
volume)

The functional Q — X;(Q)~1/2 is strictly concave

(Brunn-Minkowski inequality for the first eigenvalue and the
equality case).
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Maximizing \;

W .

e recall that we want to solve

max{A1(€2),2 convex , |Q| > Vg, P(?) = Py}

The class C = {2 convex , [Q2| > Vj, P(2) = Py} Is convex for
the Minkowski sum (Brunn-Minkowski inequality for the
volume)

The functional Q — X;(Q)~1/2 is strictly concave
(Brunn-Minkowski inequality for the first eigenvalue and the
equality case).

Consequence: the maximizer is indecomposable for the
class C.
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Maximizing \;

W .

e recall that we want to solve

max{A1(€2),2 convex , |Q| > Vg, P(?) = Py}

The class C = {2 convex , [Q2| > Vj, P(2) = Py} Is convex for
the Minkowski sum (Brunn-Minkowski inequality for the
volume)

The functional Q — X;(Q)~1/2 is strictly concave

(Brunn-Minkowski inequality for the first eigenvalue and the

equality case).

Consequence: the maximizer is indecomposable for the

class C.

Question: Does it imply that it is a triangle? If yes, it can be
Lproved that the maximizer is an isosceles triangle. J
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Analytic approach
- B

We recall that K is convex iff i/ + h IS a positive measure.
We want to perform variations preserving convexity.

o -
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Analytic approach
- B

We recall that K is convex iff i/ + h IS a positive measure.
We want to perform variations preserving convexity.

Lemma|[T. Lachand-Robert,M. Peletier, J. Lamboley, A.
Novruzi] If suppt(h” + h) has at least 3 points in (0, ¢), there
exists v compactly supported in (0, ) such that h + tv Is the
support function of a convex set.

o -
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Analytic approach
- B

We recall that K is convex iff i/ + h IS a positive measure.
We want to perform variations preserving convexity.

Lemma|[T. Lachand-Robert,M. Peletier, J. Lamboley, A.
Novruzi] If suppt(h” + h) has at least 3 points in (0, ¢), there
exists v compactly supported in (0, ) such that h + tv Is the
support function of a convex set.

Consequence: If J(K) = j(hg) Is strictly "locally concave"
In h, the minimizers have to be polygons.

o -
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A geometric example

-

(Work with Chiara Bianchini)
We recall that we want to minimize J,(K) = o|K| — P(K) In
the class B = {D, C K C Dy, K convex}.

=

o -
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A geometric example

f(Work with Chiara Bianchini) T
We recall that we want to minimize J,(K) = o|K| — P(K) In
the class B = {D, C K C Dy, K convex}.

Using the support function, we have

27 2T
To(K) :a/ h%(—h’KZ—/ hi
0 0

Let h(= hg) be a minimizer and assume that the support of
h"” + h has at least 3 points in some interval (0, ¢).
According to the previous Lemma, there exists v compactly
supported in (0, ¢) such that i + tv Is the support function of
a convex set.

o -

Carthage Mav. 2010 — p. 17/2



A geometric example (2)

-

Then the second derivative J!! must be non negative at v:

=

21
2
< JY(h),v,v >:/ v — 0" > 0.
0
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A geometric example (2)

-

Then the second derivative J!! must be non negative at v:

=

€ 2 €
2 & 2
O§/UQ—U’§(—2—1)/ v
0 n 0

(Poincaré inequality) which is a contradiction if ¢ < 7.

21
2
< JY(h),v,v >:/ v — 0" > 0.
0

Now

o -
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A geometric example (2)

o .

Then the second derivative J!! must be non negative at v:

21
2
< JY(h),v,v >:/ v — 0" > 0.
0

€ 9 82 € 9
O§/UQ—U’§(—2—1)/ v
0 T 0

(Poincaré inequality) which is a contradiction if ¢ < 7.

Now

Consequence: Any (local) minimizer is a polygon inside the
ring

o -
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A geometric example (3)

-

What are the minimizer(s)? Of course, it depends on the
parameters a, b, .

=

a=1,06=2,aa=0.33 a=1,0=3,a=1.5

o



The Mahler conjecture (1)

-

(work in progress with Evans Harrell and Jimmy Lamboley)
We recall that we want to minimize the Mahler volume
M(K) = |K||K°| where K° is the polar body of K.

=

o -
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The Mahler conjecture (1)
- o

(work in progress with Evans Harrell and Jimmy Lamboley)
We recall that we want to minimize the Mahler volume
M(K) = |K||K°| where K° is the polar body of K.

In terms of the support function, the (2-D) Mahler volume
can be expressed as

= ([ ) (2
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The Mahler conjecture (2)

=

fThus a similar analysis, using the second order optimality
condition, provides:
Any (local) minimizer of the Mahler volume in 2D is a

polygon.

o -
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The Mahler conjecture (2)
-

fThus a similar analysis, using the second order optimality
condition, provides:
Any (local) minimizer of the Mahler volume in 2D is a

polygon.

A more careful analysis gives:
Theorem [Mahler] In the plane, the minimizers of the Mahler
volume are the square and the parallelograms.

o -
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The Mahler conjecture (2)
-

fThus a similar analysis, using the second order optimality
condition, provides:
Any (local) minimizer of the Mahler volume in 2D is a

polygon.

A more careful analysis gives:
Theorem [Mahler] In the plane, the minimizers of the Mahler
volume are the square and the parallelograms.

Aim: apply this technigue in higher dimensions to make
progress in the general conjecture.

o -
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