Some shape optimization problems with a polygonal solution

Antoine HENROT (joint works with Chiara BIANCHINI (Nancy), Evans HARRELL
(Georgia-Tech), Jimmy LAMBOLEY (Paris-Dauphine))

```
Antoine.Henrot@iecn.u-nancy.fr
```

Institut Élie Cartan Nancy - FRANCE
Nancy-Université - CNRS - INRIA

Introduction

In this talk, we consider the class

$$
\mathcal{K}=\left\{K \subset \mathbb{R}^{2} ; K \text { convex set }\right\}
$$

with various other constraints.
We are interested in minimization (or maximization) problems on various subsets of the class \mathcal{K} whose solutions are singular, actually polygons.

Example 1: the farthest convex set

We consider the class

$$
\mathcal{A}=\left\{K \subset \mathbb{R}^{2} ; K \text { convex set }, P(K)=2 \pi, s(K)=O\right\}
$$

where $P(K)$ denotes the perimeter of K and $s(K)$ its Steiner point.

Example 1: the farthest convex set

We consider the class

$$
\mathcal{A}=\left\{K \subset \mathbb{R}^{2} ; K \text { convex set }, P(K)=2 \pi, s(K)=O\right\}
$$

where $P(K)$ denotes the perimeter of K and $s(K)$ its Steiner point.
\mathcal{A} is convex for the Minkowski sum, compact for the Hausdorff or the L^{2} distance. We want to describe the "boundary" of \mathcal{A}.

Example 1: the farthest convex set

We consider the class

$$
\mathcal{A}=\left\{K \subset \mathbb{R}^{2} ; K \text { convex set }, P(K)=2 \pi, s(K)=O\right\}
$$

where $P(K)$ denotes the perimeter of K and $s(K)$ its Steiner point.
\mathcal{A} is convex for the Minkowski sum, compact for the Hausdorff or the L^{2} distance. We want to describe the "boundary" of \mathcal{A}.

More precisely, we want to answer the following Question 1: Let C be given in \mathcal{A}, what is the farthest convex set K_{C} such that $d\left(K_{C}, C\right)=\max _{K \in \mathcal{A}} d(K, C)$.

Example 2: a geometric problem

Let D_{a} and D_{b} be the disks, centered at O of radius a, b. Let \mathcal{B} be the class $\mathcal{B}=\left\{D_{a} \subset K \subset D_{b}, K\right.$ convex $\}$.
Let $\alpha>0$ be given. We want to minimize

$$
J_{\alpha}(K)=\alpha|K|-P(K) .
$$

Question 2: What is the solution for any α ?

Example 3: the first eigenvalue

Let $\lambda_{1}(\Omega)$ denotes the first eigenvalue of the Laplace operator on the bounded open set Ω, with Dirichlet boundary conditions.

Example 3: the first eigenvalue

Let $\lambda_{1}(\Omega)$ denotes the first eigenvalue of the Laplace operator on the bounded open set Ω, with Dirichlet boundary conditions.
The problem $\min \left\{\lambda_{1}(\Omega),|\Omega|=V_{0}\right\}$ has a well-known solution: the ball of area V_{0}. But what about the maximization problem?

Example 3: the first eigenvalue

Let $\lambda_{1}(\Omega)$ denotes the first eigenvalue of the Laplace operator on the bounded open set Ω, with Dirichlet boundary conditions.
The problem $\min \left\{\lambda_{1}(\Omega),|\Omega|=V_{0}\right\}$ has a well-known solution: the ball of area V_{0}. But what about the maximization problem?
Of course, $\sup \left\{\lambda_{1}(\Omega),|\Omega|=V_{0}\right\}=+\infty$.

Example 3: the first eigenvalue

Let $\lambda_{1}(\Omega)$ denotes the first eigenvalue of the Laplace operator on the bounded open set Ω, with Dirichlet boundary conditions.
The problem $\min \left\{\lambda_{1}(\Omega),|\Omega|=V_{0}\right\}$ has a well-known solution: the ball of area V_{0}. But what about the maximization problem?
Of course, $\sup \left\{\lambda_{1}(\Omega),|\Omega|=V_{0}\right\}=+\infty$.
The problem $\max \left\{\lambda_{1}(\Omega), \Omega\right.$ convex , $\left.|\Omega|=V_{0}, P(\Omega) \geq P_{0}\right\}$ is well-posed.
Question 3: What is the maximizer of the first eigenvalue among convex domains with perimeter and area constraints?

Example 4: the Mahler conjecture

Let K be a symmetric convex body and K° its polar body: $K^{\circ}=\{\xi ;|x . \xi|<1, \forall x \in K\}$. The Mahler volume is $M(K)=|K|\left|K^{\circ}\right|$. It is invariant by affine transformation.

Example 4: the Mahler conjecture

Let K be a symmetric convex body and K° its polar body: $K^{\circ}=\{\xi ;|x . \xi|<1, \forall x \in K\}$. The Mahler volume is $M(K)=|K|\left|K^{\circ}\right|$. It is invariant by affine transformation.
What are the convex bodies which maximize and minimize the Mahler volume?
Maximizers are the balls (and ellipses) $M(K) \leq M(B)$ (Santalo 1949).

Example 4: the Mahler conjecture

Let K be a symmetric convex body and K° its polar body: $K^{\circ}=\{\xi ;|x . \xi|<1, \forall x \in K\}$. The Mahler volume is $M(K)=|K|\left|K^{\circ}\right|$. It is invariant by affine transformation.
What are the convex bodies which maximize and minimize the Mahler volume?
Maximizers are the balls (and ellipses) $M(K) \leq M(B)$ (Santalo 1949).
Question 4: What are the minimizers of the Mahler volume?

Example 4: the Mahler conjecture

Let K be a symmetric convex body and K° its polar body: $K^{\circ}=\{\xi ;|x . \xi|<1, \forall x \in K\}$. The Mahler volume is $M(K)=|K|\left|K^{\circ}\right|$. It is invariant by affine transformation.
What are the convex bodies which maximize and minimize the Mahler volume?
Maximizers are the balls (and ellipses) $M(K) \leq M(B)$ (Santalo 1949).
Question 4: What are the minimizers of the Mahler volume?
In 2D, it is the square (Mahler). In higher dimensions, it is a famous conjecture: it should be the cube (Difficult question: see T. Tao's blog).

A geometric approach

Classical fact: If we maximize a strictly convex function over a convex domain \mathcal{A}, the maximum is attained at extreme points of \mathcal{A}.

A geometric approach

Classical fact: If we maximize a strictly convex function over a convex domain \mathcal{A}, the maximum is attained at extreme points of \mathcal{A}.

For domains, convexity or concavity properties are known as Brunn-Minkowski inequalities. For example, in the plane, $|K|^{1 / 2}$ or $\lambda_{1}(\Omega)^{-1 / 2}$ are strictly concave:

$$
\left|(1-t) K_{0}+t K_{1}\right|^{1 / 2} \geq(1-t)\left|K_{0}\right|^{1 / 2}+t\left|K_{1}\right|^{1 / 2}
$$

with equality iff K_{0}, K_{1} are homothetic.

Indecomposability

Definition K is indecomposable (in \mathcal{M}) if

$$
K=(1-t) K_{0}+t K_{1}\left(\text { with } K_{0}, K_{1} \in \mathcal{M}\right)
$$

implies K_{0}, K_{1} are homothetic to K.

Indecomposability

Definition K is indecomposable (in \mathcal{M}) if

$$
K=(1-t) K_{0}+t K_{1}\left(\text { with } K_{0}, K_{1} \in \mathcal{M}\right)
$$

implies K_{0}, K_{1} are homothetic to K.
Theorem In \mathbb{R}^{2}, the indecomposable convex sets are the triangles and the segments.

Indecomposability

Definition K is indecomposable (in \mathcal{M}) if

$$
K=(1-t) K_{0}+t K_{1}\left(\text { with } K_{0}, K_{1} \in \mathcal{M}\right)
$$

implies K_{0}, K_{1} are homothetic to K.
Theorem In \mathbb{R}^{2}, the indecomposable convex sets are the triangles and the segments.

Corollary Any maximizer of a strictly convex functional in the plane is a segment or a triangle.

Indecomposability

Definition K is indecomposable (in \mathcal{M}) if

$$
K=(1-t) K_{0}+t K_{1}\left(\text { with } K_{0}, K_{1} \in \mathcal{M}\right)
$$

implies K_{0}, K_{1} are homothetic to K.
Theorem In \mathbb{R}^{2}, the indecomposable convex sets are the triangles and the segments.

Corollary Any maximizer of a strictly convex functional in the plane is a segment or a triangle.

Example Minimizers of the logarithm capacity in \mathbb{R}^{2} among convex sets of given perimeter are triangles or segments.

The support function(1)

Let K be a plane convex set.
The support function h_{K} of K is defined by:

$$
h_{K}(\theta):=\max \left\{x \cdot e^{i \theta}: x \in K\right\} .
$$

The support function(1)

Let K be a plane convex set.
The support function h_{K} of K is defined by:

$$
h_{K}(\theta):=\max \left\{x \cdot e^{i \theta}: x \in K\right\} .
$$

The perimeter $P(K)$ of the convex set is given by:

$$
P(K)=\int_{0}^{2 \pi} h_{K}(\theta) d \theta
$$

The support function(1)

Let K be a plane convex set.
The support function h_{K} of K is defined by:

$$
h_{K}(\theta):=\max \left\{x \cdot e^{i \theta}: x \in K\right\} .
$$

The perimeter $P(K)$ of the convex set is given by:

$$
P(K)=\int_{0}^{2 \pi} h_{K}(\theta) d \theta
$$

The Steiner point $s(K)$ of the convex set is defined by:

$$
s(K)=\frac{1}{\pi} \int_{0}^{2 \pi} h_{K}(\theta) e^{i \theta} d \theta
$$

The support function(2)

The support function gives an easy characterization of convex sets:
K is a convex set $\Longleftrightarrow h_{K}^{\prime \prime}+h_{K}$ is a positive measure

The support function(2)

The support function gives an easy characterization of convex sets:
K is a convex set $\Longleftrightarrow h_{K}^{\prime \prime}+h_{K}$ is a positive measure
The polygons are also well characterized

$$
K \text { is a polygon } \Longleftrightarrow h_{K}^{\prime \prime}+h_{K}=\sum_{j=1}^{n} a_{j} \delta_{\theta_{j}}
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ and $\theta_{1}, \theta_{2}, \ldots, \theta_{n}$ denote the lengths of the sides and the angles of the corresponding outer normals.

Support function and distances

The Hausdorff distance can be defined using the support functions:

$$
d_{H}(K, L)=\left\|h_{K}-h_{L}\right\|_{\infty} .
$$

We can also define a L^{2} distance (Mc Clure and Vitale) by

$$
d_{2}(K, L):=\left(\int_{0}^{2 \pi}\left|h_{K}-h_{L}\right|^{2} d \theta\right)^{1 / 2} .
$$

The farthest convex set (L^{2})

(Joint work with Evans Harrell)
Theorem Let J be a functional defined by

$$
J(K):=\int_{0}^{2 \pi} a h_{K}^{2}+b h_{K}^{\prime}{ }^{2}+c h_{K}+d h_{K}^{\prime} d \theta
$$

(example the L^{2} distance: $J(K)=\int_{0}^{2 \pi}\left(h_{K}-h_{C}\right)^{2} d \theta$). Then every local maximizer of the functional J within the class \mathcal{A} is either a segment or a triangle.

The farthest convex set (L^{2})

(Joint work with Evans Harrell)
Theorem Let J be a functional defined by

$$
J(K):=\int_{0}^{2 \pi} a h_{K}^{2}+b h_{K}^{\prime}{ }^{2}+c h_{K}+d h_{K}^{\prime} d \theta
$$

(example the L^{2} distance: $J(K)=\int_{0}^{2 \pi}\left(h_{K}-h_{C}\right)^{2} d \theta$). Then every local maximizer of the functional J within the class \mathcal{A} is either a segment or a triangle.
Proof: Use indecomposability!

The farthest convex set (L^{2})

(Joint work with Evans Harrell)
Theorem Let J be a functional defined by

$$
J(K):=\int_{0}^{2 \pi} a h_{K}^{2}+b{h_{K}^{\prime}}^{2}+c h_{K}+d h_{K}^{\prime} d \theta
$$

(example the L^{2} distance: $J(K)=\int_{0}^{2 \pi}\left(h_{K}-h_{C}\right)^{2} d \theta$). Then every local maximizer of the functional J within the class \mathcal{A} is either a segment or a triangle.
Proof: Use indecomposability!
Corollary The farthest convex set for the L^{2} distance is either a segment or a triangle.

The farthest convex set (L^{2})

(Joint work with Evans Harrell)
Theorem Let J be a functional defined by

$$
J(K):=\int_{0}^{2 \pi} a h_{K}^{2}+b{h_{K}^{\prime}}^{2}+c h_{K}+d h_{K}^{\prime} d \theta
$$

(example the L^{2} distance: $J(K)=\int_{0}^{2 \pi}\left(h_{K}-h_{C}\right)^{2} d \theta$). Then every local maximizer of the functional J within the class \mathcal{A} is either a segment or a triangle.
Proof: Use indecomposability!
Corollary The farthest convex set for the L^{2} distance is either a segment or a triangle.
Actually, we can prove that it is a segment

The farthest convex set (Hausdorff)

Theorem [farthest convex set for Hausdorff distance] If C is a given convex set in the class \mathcal{A}, then the convex set K_{C} for which

$$
d_{H}\left(C, K_{C}\right)=\max \left\{d_{H}(C, K): K \in \mathcal{A}\right\}
$$

is a segment.

Ingredient: a geometric inequality

Theorem Let K be any plane convex set with its Steiner point at the origin. Then

$$
\max h_{K} \leq \frac{P(K)}{4} \leq \min h_{K}+\max h_{K},
$$

where both inequalities are sharp and saturated by any line segment.

Ingredient: a geometric inequality

Theorem Let K be any plane convex set with its Steiner point at the origin. Then

$$
\max h_{K} \leq \frac{P(K)}{4} \leq \min h_{K}+\max h_{K},
$$

where both inequalities are sharp and saturated by any line segment.
The first inequality is due to P. Mc Mullen. It implies that the diameter of \mathcal{A} is less than $\pi / 2$.

Maximizing λ_{1}

We recall that we want to solve

$$
\max \left\{\lambda_{1}(\Omega), \Omega \text { convex , }|\Omega| \geq V_{0}, P(\Omega)=P_{0}\right\}
$$

Maximizing λ_{1}

We recall that we want to solve

$$
\max \left\{\lambda_{1}(\Omega), \Omega \text { convex , }|\Omega| \geq V_{0}, P(\Omega)=P_{0}\right\}
$$

The class $\mathcal{C}=\left\{\Omega\right.$ convex , $\left.|\Omega| \geq V_{0}, P(\Omega)=P_{0}\right\}$ is convex for the Minkowski sum (Brunn-Minkowski inequality for the volume)

Maximizing λ_{1}

We recall that we want to solve

$$
\max \left\{\lambda_{1}(\Omega), \Omega \text { convex , }|\Omega| \geq V_{0}, P(\Omega)=P_{0}\right\}
$$

The class $\mathcal{C}=\left\{\Omega\right.$ convex , $\left.|\Omega| \geq V_{0}, P(\Omega)=P_{0}\right\}$ is convex for the Minkowski sum (Brunn-Minkowski inequality for the volume)
The functional $\Omega \mapsto \lambda_{1}(\Omega)^{-1 / 2}$ is strictly concave
(Brunn-Minkowski inequality for the first eigenvalue and the equality case).

Maximizing λ_{1}

We recall that we want to solve

$$
\max \left\{\lambda_{1}(\Omega), \Omega \text { convex , }|\Omega| \geq V_{0}, P(\Omega)=P_{0}\right\}
$$

The class $\mathcal{C}=\left\{\Omega\right.$ convex , $\left.|\Omega| \geq V_{0}, P(\Omega)=P_{0}\right\}$ is convex for the Minkowski sum (Brunn-Minkowski inequality for the volume)
The functional $\Omega \mapsto \lambda_{1}(\Omega)^{-1 / 2}$ is strictly concave
(Brunn-Minkowski inequality for the first eigenvalue and the equality case).
Consequence: the maximizer is indecomposable for the class \mathcal{C}.

Maximizing λ_{1}

We recall that we want to solve

$$
\max \left\{\lambda_{1}(\Omega), \Omega \text { convex , }|\Omega| \geq V_{0}, P(\Omega)=P_{0}\right\}
$$

The class $\mathcal{C}=\left\{\Omega\right.$ convex , $\left.|\Omega| \geq V_{0}, P(\Omega)=P_{0}\right\}$ is convex for the Minkowski sum (Brunn-Minkowski inequality for the volume)
The functional $\Omega \mapsto \lambda_{1}(\Omega)^{-1 / 2}$ is strictly concave
(Brunn-Minkowski inequality for the first eigenvalue and the equality case).
Consequence: the maximizer is indecomposable for the class \mathcal{C}.
Question: Does it imply that it is a triangle? If yes, it can be proved that the maximizer is an isosceles triangle.

Analytic approach

We recall that K is convex iff $h_{K}^{\prime \prime}+h_{K}$ is a positive measure. We want to perform variations preserving convexity.

Analytic approach

We recall that K is convex iff $h_{K}^{\prime \prime}+h_{K}$ is a positive measure. We want to perform variations preserving convexity.

Lemma[T. Lachand-Robert,M. Peletier, J. Lamboley, A. Novruzi] If suppt $\left(h^{\prime \prime}+h\right)$ has at least 3 points in $(0, \varepsilon)$, there exists v compactly supported in $(0, \varepsilon)$ such that $h+t v$ is the support function of a convex set.

Analytic approach

We recall that K is convex iff $h_{K}^{\prime \prime}+h_{K}$ is a positive measure. We want to perform variations preserving convexity.

Lemma[T. Lachand-Robert,M. Peletier, J. Lamboley, A. Novruzi] If suppt $\left(h^{\prime \prime}+h\right)$ has at least 3 points in $(0, \varepsilon)$, there exists v compactly supported in $(0, \varepsilon)$ such that $h+t v$ is the support function of a convex set.

Consequence: If $J(K)=j\left(h_{K}\right)$ is strictly "locally concave" in h, the minimizers have to be polygons.

A geometric example

(Work with Chiara Bianchini)
We recall that we want to minimize $J_{\alpha}(K)=\alpha|K|-P(K)$ in the class $\mathcal{B}=\left\{D_{a} \subset K \subset D_{b}, K\right.$ convex $\}$.

A geometric example

(Work with Chiara Bianchini)
We recall that we want to minimize $J_{\alpha}(K)=\alpha|K|-P(K)$ in the class $\mathcal{B}=\left\{D_{a} \subset K \subset D_{b}, K\right.$ convex $\}$.
Using the support function, we have

$$
J_{\alpha}(K)=\alpha \int_{0}^{2 \pi} h_{K}^{2}-h_{K}^{\prime}{ }^{2}-\int_{0}^{2 \pi} h_{K}
$$

Let $h\left(=h_{K}\right)$ be a minimizer and assume that the support of $h^{\prime \prime}+h$ has at least 3 points in some interval $(0, \varepsilon)$.
According to the previous Lemma, there exists v compactly supported in $(0, \varepsilon)$ such that $h+t v$ is the support function of a convex set.

A geometric example (2)

Then the second derivative $J_{\alpha}^{\prime \prime}$ must be non negative at v :

$$
<J_{\alpha}^{\prime \prime}(h), v, v>=\int_{0}^{2 \pi} v^{2}-v^{\prime 2} \geq 0
$$

A geometric example (2)

Then the second derivative $J_{\alpha}^{\prime \prime}$ must be non negative at v :

$$
<J_{\alpha}^{\prime \prime}(h), v, v>=\int_{0}^{2 \pi} v^{2}-v^{\prime 2} \geq 0
$$

Now

$$
0 \leq \int_{0}^{\varepsilon} v^{2}-v^{\prime 2} \leq\left(\frac{\varepsilon^{2}}{\pi^{2}}-1\right) \int_{0}^{\varepsilon} v^{\prime 2}
$$

(Poincaré inequality) which is a contradiction if $\varepsilon<\pi$.

A geometric example (2)

Then the second derivative $J_{\alpha}^{\prime \prime}$ must be non negative at v :

$$
<J_{\alpha}^{\prime \prime}(h), v, v>=\int_{0}^{2 \pi} v^{2}-v^{\prime 2} \geq 0
$$

Now

$$
0 \leq \int_{0}^{\varepsilon} v^{2}-v^{\prime 2} \leq\left(\frac{\varepsilon^{2}}{\pi^{2}}-1\right) \int_{0}^{\varepsilon} v^{\prime 2}
$$

(Poincaré inequality) which is a contradiction if $\varepsilon<\pi$.
Consequence: Any (local) minimizer is a polygon inside the ring

A geometric example (3)

What are the minimizer(s)? Of course, it depends on the parameters a, b, α.

$$
a=1, b=2, \alpha=0.33
$$

$$
a=1, b=3, \alpha=1.5
$$

The Mahler conjecture (1)

(work in progress with Evans Harrell and Jimmy Lamboley) We recall that we want to minimize the Mahler volume $M(K)=|K|\left|K^{\circ}\right|$ where K° is the polar body of K.

The Mahler conjecture (1)

(work in progress with Evans Harrell and Jimmy Lamboley) We recall that we want to minimize the Mahler volume $M(K)=|K|\left|K^{\circ}\right|$ where K° is the polar body of K.

In terms of the support function, the (2-D) Mahler volume can be expressed as

$$
M\left(h_{K}\right)=\left(\int_{0}^{2 \pi} h_{K}^{2}-{h_{K}^{\prime}}^{2}\right)\left(\int_{0}^{2 \pi} \frac{1}{2 h_{K}^{2}}\right)
$$

The Mahler conjecture (2)

Thus a similar analysis, using the second order optimality condition, provides:
Any (local) minimizer of the Mahler volume in 2D is a polygon.

The Mahler conjecture (2)

Thus a similar analysis, using the second order optimality condition, provides:
Any (local) minimizer of the Mahler volume in 2D is a polygon.

A more careful analysis gives:
Theorem [Mahler] In the plane, the minimizers of the Mahler volume are the square and the parallelograms.

The Mahler conjecture (2)

Thus a similar analysis, using the second order optimality condition, provides:
Any (local) minimizer of the Mahler volume in 2D is a polygon.

A more careful analysis gives:
Theorem [Mahler] In the plane, the minimizers of the Mahler volume are the square and the parallelograms.

Aim: apply this technique in higher dimensions to make progress in the general conjecture.

