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Introduction

In this talk, we consider the class

K = {K ⊂ R
2;K convex set}

with various other constraints.

We are interested in minimization (or maximization)
problems on various subsets of the class K whose solutions
are singular, actually polygons.
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Example 1: the farthest convex set

We consider the class

A = {K ⊂ R
2;K convex set , P (K) = 2π, s(K) = O}

where P (K) denotes the perimeter of K and s(K) its
Steiner point.
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Example 1: the farthest convex set

We consider the class

A = {K ⊂ R
2;K convex set , P (K) = 2π, s(K) = O}

where P (K) denotes the perimeter of K and s(K) its
Steiner point.

A is convex for the Minkowski sum, compact for the
Hausdorff or the L2 distance. We want to describe the
"boundary" of A.

More precisely, we want to answer the following
Question 1: Let C be given in A, what is the farthest convex
set KC such that d(KC , C) = maxK∈A d(K,C).
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Example 2: a geometric problem

Let Da and Db be the disks, centered at O of radius a, b. Let
B be the class B = {Da ⊂ K ⊂ Db,K convex}.
Let α > 0 be given. We want to minimize

Jα(K) = α|K| − P (K) .

Question 2: What is the solution for any α?

D
a

D
b
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Example 3: the first eigenvalue

Let λ1(Ω) denotes the first eigenvalue of the Laplace
operator on the bounded open set Ω, with Dirichlet
boundary conditions.
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Example 3: the first eigenvalue

Let λ1(Ω) denotes the first eigenvalue of the Laplace
operator on the bounded open set Ω, with Dirichlet
boundary conditions.

The problem min{λ1(Ω), |Ω| = V0} has a well-known
solution: the ball of area V0. But what about the
maximization problem?
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Example 3: the first eigenvalue

Let λ1(Ω) denotes the first eigenvalue of the Laplace
operator on the bounded open set Ω, with Dirichlet
boundary conditions.

The problem min{λ1(Ω), |Ω| = V0} has a well-known
solution: the ball of area V0. But what about the
maximization problem?

Of course, sup{λ1(Ω), |Ω| = V0} = +∞.

The problem max{λ1(Ω),Ω convex , |Ω| = V0, P (Ω) ≥ P0} is
well-posed.
Question 3: What is the maximizer of the first eigenvalue
among convex domains with perimeter and area
constraints?
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Example 4: the Mahler conjecture

Let K be a symmetric convex body and K◦ its polar body:
K◦ = {ξ; |x.ξ| < 1,∀x ∈ K}. The Mahler volume is
M(K) = |K||K◦|. It is invariant by affine transformation.
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Let K be a symmetric convex body and K◦ its polar body:
K◦ = {ξ; |x.ξ| < 1,∀x ∈ K}. The Mahler volume is
M(K) = |K||K◦|. It is invariant by affine transformation.

What are the convex bodies which maximize and minimize
the Mahler volume?
Maximizers are the balls (and ellipses) M(K) ≤ M(B)
(Santalo 1949).
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Example 4: the Mahler conjecture

Let K be a symmetric convex body and K◦ its polar body:
K◦ = {ξ; |x.ξ| < 1,∀x ∈ K}. The Mahler volume is
M(K) = |K||K◦|. It is invariant by affine transformation.

What are the convex bodies which maximize and minimize
the Mahler volume?
Maximizers are the balls (and ellipses) M(K) ≤ M(B)
(Santalo 1949).

Question 4: What are the minimizers of the Mahler volume?

In 2D, it is the square (Mahler). In higher dimensions, it is a
famous conjecture: it should be the cube (Difficult question:
see T. Tao’s blog).
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A geometric approach

Classical fact: If we maximize a strictly convex function over
a convex domain A, the maximum is attained at extreme
points of A.
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A geometric approach

Classical fact: If we maximize a strictly convex function over
a convex domain A, the maximum is attained at extreme
points of A.

For domains, convexity or concavity properties are known
as Brunn-Minkowski inequalities. For example, in the plane,
|K|1/2 or λ1(Ω)−1/2 are strictly concave:

|(1 − t)K0 + tK1|
1/2 ≥ (1 − t)|K0|

1/2 + t|K1|
1/2

with equality iff K0,K1 are homothetic.
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Indecomposability

Definition K is indecomposable (in M) if

K = (1 − t)K0 + tK1 (with K0,K1 ∈ M)

implies K0,K1 are homothetic to K.

Carthage May, 2010 – p. 8/21



Indecomposability

Definition K is indecomposable (in M) if
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Indecomposability

Definition K is indecomposable (in M) if

K = (1 − t)K0 + tK1 (with K0,K1 ∈ M)

implies K0,K1 are homothetic to K.

Theorem In R
2, the indecomposable convex sets are the

triangles and the segments.

Corollary Any maximizer of a strictly convex functional in
the plane is a segment or a triangle.

Example Minimizers of the logarithm capacity in R
2 among

convex sets of given perimeter are triangles or segments.
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The support function(1)

Let K be a plane convex set.
The support function hK of K is defined by:

hK(θ) := max{x · eiθ : x ∈ K} .
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The support function(1)

Let K be a plane convex set.
The support function hK of K is defined by:

hK(θ) := max{x · eiθ : x ∈ K} .

The perimeter P (K) of the convex set is given by:

P (K) =

∫

2π

0

hK(θ) dθ .
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The support function(1)

Let K be a plane convex set.
The support function hK of K is defined by:

hK(θ) := max{x · eiθ : x ∈ K} .

The perimeter P (K) of the convex set is given by:

P (K) =

∫

2π

0

hK(θ) dθ .

The Steiner point s(K) of the convex set is defined by:

s(K) =
1

π

∫

2π

0

hK(θ)eiθ dθ .
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The support function(2)

The support function gives an easy characterization of
convex sets:

K is a convex set ⇐⇒ h′′
K + hK is a positive measure
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The support function(2)

The support function gives an easy characterization of
convex sets:

K is a convex set ⇐⇒ h′′
K + hK is a positive measure

The polygons are also well characterized

K is a polygon ⇐⇒ h′′
K + hK =

n
∑

j=1

ajδθj

where a1, a2, . . . , an and θ1, θ2, . . . , θn denote the lengths of
the sides and the angles of the corresponding outer
normals.

Carthage May, 2010 – p. 10/21



Support function and distances

The Hausdorff distance can be defined using the support
functions:

dH(K,L) = ‖hK − hL‖∞.

We can also define a L2 distance (Mc Clure and Vitale) by

d2(K,L) :=

(
∫

2π

0

|hK − hL|
2 dθ

)1/2

.
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The farthest convex set (L2)

(Joint work with Evans Harrell)
Theorem Let J be a functional defined by

J(K) :=

∫

2π

0

a h2

K + b h′
K

2
+ c hK + d h′

K dθ

(example the L2 distance: J(K) =
∫

2π
0

(hK − hC)2 dθ). Then
every local maximizer of the functional J within the class A
is either a segment or a triangle.
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The farthest convex set (L2)

(Joint work with Evans Harrell)
Theorem Let J be a functional defined by

J(K) :=

∫

2π

0

a h2

K + b h′
K

2
+ c hK + d h′

K dθ

(example the L2 distance: J(K) =
∫

2π
0

(hK − hC)2 dθ). Then
every local maximizer of the functional J within the class A
is either a segment or a triangle.

Proof: Use indecomposability!

Corollary The farthest convex set for the L2 distance is
either a segment or a triangle.

Actually, we can prove that it is a segment
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The farthest convex set (Hausdorff)

Theorem [farthest convex set for Hausdorff distance]
If C is a given convex set in the class A, then the convex set
KC for which

dH(C,KC) = max{dH(C,K) : K ∈ A}

is a segment.

O

P

Q

Σ
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Ingredient: a geometric inequality

Theorem Let K be any plane convex set with its Steiner
point at the origin. Then

max hK ≤
P (K)

4
≤ min hK + maxhK ,

where both inequalities are sharp and saturated by any line
segment.
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Ingredient: a geometric inequality

Theorem Let K be any plane convex set with its Steiner
point at the origin. Then

max hK ≤
P (K)

4
≤ min hK + maxhK ,

where both inequalities are sharp and saturated by any line
segment.

The first inequality is due to P. Mc Mullen. It implies that the
diameter of A is less than π/2.
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Maximizing λ1

We recall that we want to solve

max{λ1(Ω),Ω convex , |Ω| ≥ V0, P (Ω) = P0}
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The class C = {Ω convex , |Ω| ≥ V0, P (Ω) = P0} is convex for
the Minkowski sum (Brunn-Minkowski inequality for the
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The functional Ω 7→ λ1(Ω)−1/2 is strictly concave
(Brunn-Minkowski inequality for the first eigenvalue and the
equality case).
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the Minkowski sum (Brunn-Minkowski inequality for the
volume)
The functional Ω 7→ λ1(Ω)−1/2 is strictly concave
(Brunn-Minkowski inequality for the first eigenvalue and the
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class C.
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Maximizing λ1

We recall that we want to solve

max{λ1(Ω),Ω convex , |Ω| ≥ V0, P (Ω) = P0}

The class C = {Ω convex , |Ω| ≥ V0, P (Ω) = P0} is convex for
the Minkowski sum (Brunn-Minkowski inequality for the
volume)
The functional Ω 7→ λ1(Ω)−1/2 is strictly concave
(Brunn-Minkowski inequality for the first eigenvalue and the
equality case).
Consequence: the maximizer is indecomposable for the
class C.
Question: Does it imply that it is a triangle? If yes, it can be
proved that the maximizer is an isosceles triangle.
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Analytic approach

We recall that K is convex iff h′′
K + hK is a positive measure.

We want to perform variations preserving convexity.
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Analytic approach

We recall that K is convex iff h′′
K + hK is a positive measure.

We want to perform variations preserving convexity.

Lemma[T. Lachand-Robert,M. Peletier, J. Lamboley, A.
Novruzi] If suppt(h′′ + h) has at least 3 points in (0, ε), there
exists v compactly supported in (0, ε) such that h + tv is the
support function of a convex set.
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Analytic approach

We recall that K is convex iff h′′
K + hK is a positive measure.

We want to perform variations preserving convexity.

Lemma[T. Lachand-Robert,M. Peletier, J. Lamboley, A.
Novruzi] If suppt(h′′ + h) has at least 3 points in (0, ε), there
exists v compactly supported in (0, ε) such that h + tv is the
support function of a convex set.

Consequence: If J(K) = j(hK) is strictly "locally concave"
in h, the minimizers have to be polygons.
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A geometric example

(Work with Chiara Bianchini)
We recall that we want to minimize Jα(K) = α|K| − P (K) in
the class B = {Da ⊂ K ⊂ Db,K convex}.
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A geometric example

(Work with Chiara Bianchini)
We recall that we want to minimize Jα(K) = α|K| − P (K) in
the class B = {Da ⊂ K ⊂ Db,K convex}.

Using the support function, we have

Jα(K) = α

∫

2π

0

h2

K − h′
K

2
−

∫

2π

0

hK

Let h(= hK) be a minimizer and assume that the support of
h′′ + h has at least 3 points in some interval (0, ε).
According to the previous Lemma, there exists v compactly
supported in (0, ε) such that h + tv is the support function of
a convex set.
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A geometric example (2)

Then the second derivative J ′′
α must be non negative at v:

< J ′′
α(h), v, v >=

∫

2π

0

v2 − v′
2
≥ 0.
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A geometric example (2)

Then the second derivative J ′′
α must be non negative at v:

< J ′′
α(h), v, v >=

∫

2π

0

v2 − v′
2
≥ 0.

Now

0 ≤

∫ ε

0

v2 − v′
2
≤ (

ε2

π2
− 1)

∫ ε

0

v′
2

(Poincaré inequality) which is a contradiction if ε < π.
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A geometric example (2)

Then the second derivative J ′′
α must be non negative at v:

< J ′′
α(h), v, v >=

∫

2π

0

v2 − v′
2
≥ 0.

Now

0 ≤

∫ ε

0

v2 − v′
2
≤ (

ε2

π2
− 1)

∫ ε

0

v′
2

(Poincaré inequality) which is a contradiction if ε < π.

Consequence: Any (local) minimizer is a polygon inside the
ring
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A geometric example (3)

What are the minimizer(s)? Of course, it depends on the
parameters a, b, α.

a = 1, b = 2, α = 0.33 a = 1, b = 3, α = 1.5
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The Mahler conjecture (1)

(work in progress with Evans Harrell and Jimmy Lamboley)
We recall that we want to minimize the Mahler volume
M(K) = |K||K◦| where K◦ is the polar body of K.
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The Mahler conjecture (1)

(work in progress with Evans Harrell and Jimmy Lamboley)
We recall that we want to minimize the Mahler volume
M(K) = |K||K◦| where K◦ is the polar body of K.

In terms of the support function, the (2-D) Mahler volume
can be expressed as

M(hK) =

(
∫

2π

0

h2

K − h′
K

2

)(
∫

2π

0

1

2h2

K

)
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The Mahler conjecture (2)

Thus a similar analysis, using the second order optimality
condition, provides:
Any (local) minimizer of the Mahler volume in 2D is a
polygon.
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The Mahler conjecture (2)

Thus a similar analysis, using the second order optimality
condition, provides:
Any (local) minimizer of the Mahler volume in 2D is a
polygon.

A more careful analysis gives:
Theorem [Mahler] In the plane, the minimizers of the Mahler
volume are the square and the parallelograms.
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The Mahler conjecture (2)

Thus a similar analysis, using the second order optimality
condition, provides:
Any (local) minimizer of the Mahler volume in 2D is a
polygon.

A more careful analysis gives:
Theorem [Mahler] In the plane, the minimizers of the Mahler
volume are the square and the parallelograms.

Aim: apply this technique in higher dimensions to make
progress in the general conjecture.
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