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Part 1: Delaunay Surfaces in R3



CMC surfaces of revolution in R3

t

uHtL

Easy computation

Plane curve t 7→ (t, u(t))

Rotate around z-axis

X(t, θ) = (t cos θ, t sin θ, u(t))

Integrate mean curvature equation
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Solutions



Other things to know

Theorem (Delaunay 1841)

The generating curves of CMC surfaces of revolution are roulettes
of conic sections.
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Theorem (Delaunay 1841)

The generating curves of CMC surfaces of revolution are roulettes
of conic sections.

Applications

Used to build other CMC surfaces in R3 (K-noids, Bubbletons)

Arise in Capillarity (modeling soap films, Double Bubble
problem)



Part 2: Delaunay Surfaces in S3



Symmetry in S3

Definition

M ⊂ S3 is symmetric, with respect to a circle C, if

Ψ(M) = M

for each conformal Ψ : S3 → S3 that fixes C pointwise.



Symmetry in S3

Definition

M ⊂ S3 is symmetric, with respect to a circle C, if

Ψ(M) = M

for each conformal Ψ : S3 → S3 that fixes C pointwise.

Lemma

M ⊂ S3 is symmetric iff there is a rotation O such that π ◦ O(M)
is rotationally symmetric in R3. Here

π : S3 \ {e4} → R3; (x1, x2, x3, x4) 7→
(x1, x2, x3)

1 − x4

is stereographic projection.



Stereographic projection, reflection, and inversion

Corollary

M ⊂ S3 is symmetric with respect to a circle C iff there

ΨQ(M) = M

for each 2-sphere Q, C ⊂ Q ⊂ S3.



A convenient parametrization

Theorem

M ⊂ S3 immersed and symmetric. Then there is a rotation O such
that π ◦ O(M) admits the (local) parametrization

X(θ, φ) = (R(θ, φ) cos θ,R(θ, φ) sin θ, h + r(θ) sinφ)

(θ, φ) ∈ (−ǫ, ǫ) × [0, 2π), for some h ∈ R and ρ > 0. Here

R(θ, φ) :=
√

r(θ)2 + ρ2 + r(θ) cos φ.



Mean curvature calculation

Expression for the mean curvature

In general

Hπ−1(X) =
1 + |X|2

2
HX + X · N

For X = (R cos θ,R sin θ, h + r sin φ),

Hπ−1(X) =
c0 + c1 cos φ + c2(cos φ)2

4rR2(r′2 + d2)3/2

where d =
√

ρ2 + r2 and c0, c1, c2 depend on r, r′ and r′′.

NOTE: Hπ−1(X) and HX are even functions of φ.



Important lemma

Lemma

If M ⊂ S3 is a non-spherical symmetric surface, we can parametrize
M with the ”convenient” parameterization with (h, ρ) = (0, 1).



Important lemma

Lemma

If M ⊂ S3 is a non-spherical symmetric surface, we can parametrize
M with the ”convenient” parameterization with (h, ρ) = (0, 1).

Proof.

Suppose h 6= 0.

0 = ∂φHM

∣

∣

∣

φ=0

=
(

X · XφHπ(M) + X · Nφ

)

∣

∣

∣

φ=0

= h

(

rHπ(M)

∣

∣

∣

φ=0
+

√

r2 + ρ2

r′2 + r2 + ρ2

)

.

Then (r2 + ρ2)rr′′ + ρ2r′2 + (r2 + ρ2)2 = 0 , which corresponds

to a sphere.



A few corollaries

Corollary

M ⊂ S3 is a symmetric surface,

HM =

√
1 + r2

(

r(r2 + 1)r′′ − r′2 + r4 − 1
)

2r(1 + r2 + r′2)3/2
.



A few corollaries

Corollary

M ⊂ S3 is a symmetric surface,

HM =

√
1 + r2

(

r(r2 + 1)r′′ − r′2 + r4 − 1
)

2r(1 + r2 + r′2)3/2
.

Corollary

M ⊂ S3 is a CMC (HM ≡ H) symmetric surface,

1√
1 + r2

√
1 + r2 + r′2

+
H

1 + r2
= c

where c is constant.



Standard Tori

parameter values

H = c − 1/4c

Θ

r



Spheres

parameter values

H = c

r

Θ



Catenoid types

parameter values

H 6= 0, c = 0.

r

Θ



Unduloid types

parameter values

c > 0, c − 1/4c < H < c and c < 0, c < H < c − 1/4c.



Nodoid types

parameter values

H > 0, 0 < c < H and H < 0, H < c < 0.



Period analysis

Period of Unduloids and Nodoids

T :=

∫ rmax

rmin

2(c(r2 + 1) − H)√
1 + r2

√

r2 − (c(r2 + 1) − H))2
dr



Period analysis

Period of Unduloids and Nodoids

T :=

∫ rmax

rmin

2(c(r2 + 1) − H)√
1 + r2

√

r2 − (c(r2 + 1) − H))2
dr

Proposition

M is an immersed torus iff

T ∈ 2πQ.

For unduloid types, this immersion is an embedding if

T = 2π/m, m ≥ 2.

This happens only for H 6= 0. In this case, there is c = c(m,H)
corresponding to an embedded unduloid type with
m bulges and necks.



Classification theorem

Theorem

The complete symmetric CMC surfaces in S3 are:
standard tori, spheres, catenoid types, unduloid types, and
nodoid types.
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Classification theorem

Theorem

The complete symmetric CMC surfaces in S3 are:
standard tori, spheres, catenoid types, unduloid types, and
nodoid types.

There are (strictly immersed) catenoid, unduloid and nodoid
type tori.

For H 6= 0, there are embedded unduloid type tori.



Two interesting and motivating open problems

Sterling and Pinkall’s Conjecture (1989)

Embedded CMC tori are symmetric.
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{
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2 = 1/2 = x2
3 + x2

4
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Sterling and Pinkall’s Conjecture (1989)

Embedded CMC tori are symmetric.

Lawson’s Conjecture (1970)

The unique embedded minimal torus is the Clifford torus

C =
{

(x1, x2, x3, x4) ∈ S3 : x2
1 + x2

2 = 1/2 = x2
3 + x2

4

}

.

Recall: Aleksandrov’s Theorem (1956)

The round sphere is the unique compact embedded CMC surface
in R3.



Rolling interpretation?

An observation:

Suppose M ∈ S3 is symmetric and π(C) is the unit circle in
R2 ⊂ R3. Then for each ρ ≥ 1

πρ(π(M) ∩ Sρ)

is a plane curve parametrized via

θ 7→
(

√

1 + r(θ)2 ± r(θ)
)

(cos θ, sin θ).



Rolling interpretation?

An observation:

Suppose M ∈ S3 is symmetric and π(C) is the unit circle in
R2 ⊂ R3. Then for each ρ ≥ 1

πρ(π(M) ∩ Sρ)

is a plane curve parametrized via

θ 7→
(

√

1 + r(θ)2 ± r(θ)
)

(cos θ, sin θ).

Conjecture

The above curve can also be obtained by trace of the
focus of a conic section that rolls without slipping on the
unit circle.


