Delaunay Surfaces in \mathbb{S}^{3}

Ryan Hynd
ryanhynd@math.berkeley.edu
Department of Mathematics
University of California, Berkeley
Queen Dido Conference Carthage, Tunisia
May 28, 2010

Part 1: Delaunay Surfaces in \mathbb{R}^{3}

CMC surfaces of revolution in \mathbb{R}^{3}

Easy computation

- Plane curve $t \mapsto(t, u(t))$
- Rotate around z-axis

$$
X(t, \theta)=(t \cos \theta, t \sin \theta, u(t))
$$

- Integrate mean curvature equation

$$
2 H=\frac{1}{t}\left(\frac{t u^{\prime}}{\sqrt{1+u^{\prime 2}}}\right)^{\prime} \Rightarrow \frac{u^{\prime}}{\sqrt{1+u^{\prime 2}}}=H t+\frac{c}{t}
$$

$$
\begin{aligned}
& 01 \\
& =\%
\end{aligned}
$$

Other things to know

Theorem (Delaunay 1841)
The generating curves of CMC surfaces of revolution are roulettes of conic sections.

Other things to know

Theorem (Delaunay 1841)

The generating curves of CMC surfaces of revolution are roulettes of conic sections.

Applications

- Used to build other CMC surfaces in \mathbb{R}^{3} (K-noids, Bubbletons)
- Arise in Capillarity (modeling soap films, Double Bubble problem)

Part 2: Delaunay Surfaces in \mathbb{S}^{3}

Symmetry in \mathbb{S}^{3}

Definition

$M \subset \mathbb{S}^{3}$ is symmetric, with respect to a circle C, if

$$
\Psi(M)=M
$$

for each conformal $\Psi: \mathbb{S}^{3} \rightarrow \mathbb{S}^{3}$ that fixes C pointwise.

Symmetry in \mathbb{S}^{3}

Definition

$M \subset \mathbb{S}^{3}$ is symmetric, with respect to a circle C, if

$$
\Psi(M)=M
$$

for each conformal $\Psi: \mathbb{S}^{3} \rightarrow \mathbb{S}^{3}$ that fixes C pointwise.

Lemma

$M \subset \mathbb{S}^{3}$ is symmetric iff there is a rotation O such that $\pi \circ O(M)$ is rotationally symmetric in \mathbb{R}^{3}. Here

$$
\pi: \mathbb{S}^{3} \backslash\left\{e_{4}\right\} \rightarrow \mathbb{R}^{3} ;\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto \frac{\left(x_{1}, x_{2}, x_{3}\right)}{1-x_{4}}
$$

is stereographic projection.

Stereographic projection, reflection, and inversion

Corollary

$M \subset \mathbb{S}^{3}$ is symmetric with respect to a circle C iff there

$$
\Psi_{Q}(M)=M
$$

for each 2-sphere $Q, C \subset Q \subset \mathbb{S}^{3}$.

A convenient parametrization

Theorem

$M \subset \mathbb{S}^{3}$ immersed and symmetric. Then there is a rotation O such that $\pi \circ O(M)$ admits the (local) parametrization

$$
X(\theta, \phi)=(R(\theta, \phi) \cos \theta, R(\theta, \phi) \sin \theta, h+r(\theta) \sin \phi)
$$

$(\theta, \phi) \in(-\epsilon, \epsilon) \times[0,2 \pi)$, for some $h \in \mathbb{R}$ and $\rho>0$. Here

$$
R(\theta, \phi):=\sqrt{r(\theta)^{2}+\rho^{2}}+r(\theta) \cos \phi .
$$

Mean curvature calculation

Expression for the mean curvature

- In general

$$
H_{\pi^{-1}(X)}=\frac{1+|X|^{2}}{2} H_{X}+X \cdot N
$$

- For $X=(R \cos \theta, R \sin \theta, h+r \sin \phi)$,

$$
H_{\pi^{-1}(X)}=\frac{c_{0}+c_{1} \cos \phi+c_{2}(\cos \phi)^{2}}{4 r R^{2}\left(r^{\prime 2}+d^{2}\right)^{3 / 2}}
$$

where $d=\sqrt{\rho^{2}+r^{2}}$ and c_{0}, c_{1}, c_{2} depend on r, r^{\prime} and $r^{\prime \prime}$.

- NOTE: $H_{\pi^{-1}(X)}$ and H_{X} are even functions of ϕ.

Important lemma

Lemma
If $M \subset \mathbb{S}^{3}$ is a non-spherical symmetric surface, we can parametrize M with the "convenient" parameterization with $(h, \rho)=(0,1)$.

Important lemma

Lemma

If $M \subset \mathbb{S}^{3}$ is a non-spherical symmetric surface, we can parametrize M with the "convenient" parameterization with $(h, \rho)=(0,1)$.

Proof.

Suppose $h \neq 0$.

$$
\begin{aligned}
0 & =\left.\partial_{\phi} H_{M}\right|_{\phi=0} \\
& =\left.\left(X \cdot X_{\phi} H_{\pi(M)}+X \cdot N_{\phi}\right)\right|_{\phi=0} \\
& =h\left(\left.r H_{\pi(M)}\right|_{\phi=0}+\sqrt{\frac{r^{2}+\rho^{2}}{r^{2}+r^{2}+\rho^{2}}}\right)
\end{aligned}
$$

Then $\left(r^{2}+\rho^{2}\right) r r^{\prime \prime}+\rho^{2} r^{\prime 2}+\left(r^{2}+\rho^{2}\right)^{2}=0$, which corresponds to a sphere.

A few corollaries

Corollary

$M \subset \mathbb{S}^{3}$ is a symmetric surface,

$$
H_{M}=\frac{\sqrt{1+r^{2}}\left(r\left(r^{2}+1\right) r^{\prime \prime}-r^{\prime 2}+r^{4}-1\right)}{2 r\left(1+r^{2}+r^{\prime 2}\right)^{3 / 2}}
$$

A few corollaries

Corollary

$M \subset \mathbb{S}^{3}$ is a symmetric surface,

$$
H_{M}=\frac{\sqrt{1+r^{2}}\left(r\left(r^{2}+1\right) r^{\prime \prime}-r^{\prime 2}+r^{4}-1\right)}{2 r\left(1+r^{2}+r^{\prime 2}\right)^{3 / 2}}
$$

Corollary

$M \subset \mathbb{S}^{3}$ is a CMC $\left(H_{M} \equiv H\right)$ symmetric surface,

$$
\frac{1}{\sqrt{1+r^{2}} \sqrt{1+r^{2}+r^{\prime 2}}}+\frac{H}{1+r^{2}}=c
$$

where c is constant.

Standard Tori

parameter values

$$
H=c-1 / 4 c
$$

Spheres

parameter values

$$
H=c
$$

Catenoid types

parameter values
$H \neq 0, c=0$.

Unduloid types

parameter values

$c>0, c-1 / 4 c<H<c$ and $c<0, c<H<c-1 / 4 c$.

Nodoid types

parameter values
 $H>0,0<c<H$ and $H<0, H<c<0$.

Period analysis

Period of Unduloids and Nodoids

$$
T:=\int_{r_{\min }}^{r_{\max }} \frac{2\left(c\left(r^{2}+1\right)-H\right)}{\sqrt{1+r^{2}} \sqrt{\left.r^{2}-\left(c\left(r^{2}+1\right)-H\right)\right)^{2}}} d r
$$

Period analysis

Period of Unduloids and Nodoids

$$
T:=\int_{r_{\min }}^{r_{\max }} \frac{2\left(c\left(r^{2}+1\right)-H\right)}{\sqrt{1+r^{2}} \sqrt{\left.r^{2}-\left(c\left(r^{2}+1\right)-H\right)\right)^{2}}} d r
$$

Proposition

M is an immersed torus iff

$$
T \in 2 \pi \mathbb{Q} .
$$

For unduloid types, this immersion is an embedding if

$$
T=2 \pi / m, \quad m \geq 2
$$

This happens only for $H \neq 0$. In this case, there is $c=c(m, H)$ corresponding to an embedded unduloid type with m bulges and necks.

Classification theorem

Theorem

- The complete symmetric CMC surfaces in \mathbb{S}^{3} are: standard tori, spheres, catenoid types, unduloid types, and nodoid types.

Classification theorem

Theorem

- The complete symmetric CMC surfaces in \mathbb{S}^{3} are: standard tori, spheres, catenoid types, unduloid types, and nodoid types.
- There are (strictly immersed) catenoid, unduloid and nodoid type tori.

Classification theorem

Theorem

- The complete symmetric CMC surfaces in \mathbb{S}^{3} are: standard tori, spheres, catenoid types, unduloid types, and nodoid types.
- There are (strictly immersed) catenoid, unduloid and nodoid type tori.
- For $H \neq 0$, there are embedded unduloid type tori.

Two interesting and motivating open problems

Sterling and Pinkall's Conjecture (1989)

Embedded CMC tori are symmetric.

Two interesting and motivating open problems

Sterling and Pinkall's Conjecture (1989)

Embedded CMC tori are symmetric.

Lawson's Conjecture (1970)

The unique embedded minimal torus is the Clifford torus

$$
\mathcal{C}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{S}^{3}: x_{1}^{2}+x_{2}^{2}=1 / 2=x_{3}^{2}+x_{4}^{2}\right\} .
$$

Sterling and Pinkall's Conjecture (1989)

Embedded CMC tori are symmetric.

Lawson's Conjecture (1970)

The unique embedded minimal torus is the Clifford torus

$$
\mathcal{C}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{S}^{3}: x_{1}^{2}+x_{2}^{2}=1 / 2=x_{3}^{2}+x_{4}^{2}\right\} .
$$

Recall: Aleksandrov's Theorem (1956)

The round sphere is the unique compact embedded CMC surface in \mathbb{R}^{3}.

Rolling interpretation?

An observation:

Suppose $M \in \mathbb{S}^{3}$ is symmetric and $\pi(C)$ is the unit circle in $\mathbb{R}^{2} \subset \mathbb{R}^{3}$. Then for each $\rho \geq 1$

$$
\pi_{\rho}\left(\pi(M) \cap S_{\rho}\right)
$$

is a plane curve parametrized via

$$
\theta \mapsto\left(\sqrt{1+r(\theta)^{2}} \pm r(\theta)\right)(\cos \theta, \sin \theta)
$$

Rolling interpretation?

An observation:

Suppose $M \in \mathbb{S}^{3}$ is symmetric and $\pi(C)$ is the unit circle in $\mathbb{R}^{2} \subset \mathbb{R}^{3}$. Then for each $\rho \geq 1$

$$
\pi_{\rho}\left(\pi(M) \cap S_{\rho}\right)
$$

is a plane curve parametrized via

$$
\theta \mapsto\left(\sqrt{1+r(\theta)^{2}} \pm r(\theta)\right)(\cos \theta, \sin \theta)
$$

Conjecture

The above curve can also be obtained by trace of the focus of a conic section that rolls without slipping on the unit circle.

