
Queen Dido Conference, May 24-29, 2010 - Carthage, Tunisia

On the Resolvent Estimates of some
Evolution Equations and Applications

Moez KHENISSI

Ecole Supérieure des Sciences et de Technologie de
Hammam Sousse



On the Resolvent Estimates of some Evolution Equations and Applications 2

1 Motivation
We consider the problem which consists on �nding u(t), a causal distribution of time
(u(t) = 0 8t < 0) such that

@2t u + Pu = f 8t 2 R; (1)

where f takes into account the initial condition and P = ��.
Consider the Laplace transform of u(t) formally de�ned by

û(�) = L(u) :=
Z +1

0

e�i�tu(t)dt; Im� < 0

Applying the Laplace transform to (1), yields

(��2 + P )û(�) = f̂ (�) () û(�) = R(�2)f̂ (�):

The resolvent R(z) := (P � z)�1 of P is de�ned everywhere in complex z-plane except
on the spectrum of P (contained in R+).
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The inverse Laplace transform :

u(t) = L�1(û) := 1

2i�

Z
i�0+R

ei�tR(�2)f̂ (�)d� with �0 < 0 (2)

What happens to the expression (2) when the integration path i�0 + R moves from the
causal half plane Im� < 0, in which the resolvent is analytic, toward the anti-causal
half-plane Im� > 0?
The resonances are the poles of the resolvent extends in the whole complex �-plane
and we have for any �xed compact set K � 
,

u(t; x) �
X

�2Res(P )

eit�w�(x)

x 2 K; t �!1:
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2 Wave Equation in Rd

8<: @2t u(t; x)��u(t; x) = 0 on R� Rd
u(0) = u0;
@tu(0) = u1

Let R > 0; support (u0; u1) � BR = fx; jxj < Rg;
Local energy :

ER(u)(t) =
1

2

Z
BR

(jru(t; x)j2 + j@tu(t; x)j2) dx

� d odd :

Huygens Principal =) ER(t) = 0 8t > 2R:

� d even :

Generalized Huygens Principal =) ER(u)(t) �
1

t2d
ER(u)(0):
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3 In exterior domain
� O obstacle (compact in Rd)
� 
 = RdnO exterior domain

(E)

8<: @2t u��u = 0 on R�

u(0) = u0; @tu(0) = u1 in 
:
u=R�@
 = 0

� Lax-Phillips:

ER(u)(t) �!
t!+1

0

� Uniform decay of ER(t) ?

ER(u)(t) � f (t)ER(u)(0); where f (t) �!
t!+1

0
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Conjecture of Lax-Phillips (67) : ER(t)& 0 uniformly () 
 is non trapping.
� 00 =) 00Ralston (1969).

� 00 (= 00

� Morawetz (61), Strauss (75),... (tech. multip.) : Start shape, strictly convex...
�Wilcox (75), (59), Vainberg (75), Rauch (78) : Resolvent.
� Melrose (79): Theorem of propagation of singularity of Melrose- Sjöstrand
� Vodev (99):

if 9 f such that ER(t) � f (t)E(0); where f (t) �!
t!+1

0

then

9�0 > 0; c > 0 such that 8j�j � �0; k�R(�)kL2comp!L2loc � c;�
ER(t) � ce��tE(0) if d odd
ER(t) � c

t2dE(0) if d even

Queen Dido Conference, May 24-29, 2010 - Carthage, Tunisia



On the Resolvent Estimates of some Evolution Equations and Applications 7

3.1 Internal stabilization for wave equation
Let (u0;u1) 2 H = HD � L2

(A)

8<: @2t u��u + a(x)@tu = 0 on R+�

u(0) = u0; @tu(0) = u1 in 
:
u=R+�@
 = 0

a(x) 2 C10 (
;R+). We denote ! = fx 2 
=a(x) > 0g.
The total energy E(t) of the solution :

E(t) =
1

2

Z



(j ru(t; x) j2 + j @tu(t; x) j2) dx: (3)

E(t2)� E(t1) = �
Z t2

t1

Z



a(x) j@tu(t; x)j2 dxdt � 0; 0 � t1 < t2: (4)

� Zuazua (91): Stabilization of the global energy (dissipater localized near @
 and near
the in�nity.

� Bardos, Lebeau, Rauch (92): bounded domain
(Control geometric Condition : "Every generalized geodesic meet !").
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De�nition 1 (Exterior Geometric Control (E.G.C.)) Let R > 0 be such that O � BR:We
say that ! veri�es the Exterior Geometric Control condition on BR (E.G.C.) if there
exists TR > 0 such that every generalized bicharacteristic 
 starting from BR at time
t = 0; is such that:
�) 
 leaves R+ �BR before time TR; or
�)
 meets R+ � ! between the time 0 and TR:

3.1.1 In odd dimension

Theorem 1 Let R > 0 such that ! veri�es the E.G.C. on BR, then there exists c > 0;
� > 0 such that

ER(u(t)) � ce��tE(0) (5)

for all solution u of (A) with (u0; u1) 2 H supported in BR.

0 Aloui (L.)& Khenissi (M.), Stabilisation de l�équation des ondes dans un domaine extérieur, Rev.Math. Iberoamericana, 28
(2002), 1-16.
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� Lax - Phillips theory adapted to the case of damped wave equation

kZ(t)k � e��t () ER(t) � e��tER(0)

� Microlocal Analysis: Theorem of propagation of microlocal defect measure ( Gérard,
Lebeau, Burq )).

3.1.2 In even dimension
In order to generalize the last result to even dimension, Khenissi 1 has studied the
outgoing resolvent (�2 + � + i�a(x))�1. He proved that this resolvent is bounded as
an operator from L2comp(
) to H1

loc(
) on a strip of the shape { Im� < c1; j�j > c2 ;
c1; c2 > 0}

1 Khenissi (M.)- Equation des ondes amorties dans un domaine extérieur, Bull.Soc. Math. France, 131 (2) (2003), 211-228.
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Theorem 1 For all � < C(1); there exists �0 > 0 so that the cutoff resolvent R�(�) is
analytic in the region

f� 2 C; =m� � �; j<e�j � �0g:

and satis�es there the estimate

krR(�)fk2L2R + k�R(�)fk
2
L2R
� c kfk2L2 : (6)

for all f 2 L2 , Supp f � BR

� If 
 is non trapping then C(1) = +1.
� If 
 is trapping then C(1) � jjajj1
� without E.G.C then C(1) = 0.
� with E.G.C then C(1) > 0.

E.G.C.) uniform decay of the local energy.

ER(t) � ce��tE(0); 8 t > 1 in odd space dimension, (7)
ER(t) �

c

t2d
E(0); 8 t > 1 in even space dimension.
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3.2 Boundary Stabilization
8<:
@2t u��u = 0 in ]0;+1[�
;
@�u + a(x)@tu = 0 on ]0;+1[�@
;
u(0; x) = u0; @tu(0; x) = u1 in 
;

(8)

a(x) 2 C1(@
) is a non negative real-valued function.

u 2 C([0;+1[; HD) \ C1([0;+1[; L2(
)):

The energy identity

E(t2)� E(t1) = �
Z t2

t1

Z
@


a(x) j@tu(t; x)j2 dxdt � 0; 0 � t1 < t2: (9)
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3.2.1 Distributions of the resonances near the real axis
Let � 2 C10 (Rn); � = 1 on O and denote

~C :=
�
C d � 3 odd
f� 2 C ; � 3�

2 < arg � <
�
2g d � 4 even.

The cutoff resolvent

R�(�) := �R(�)�

considered as operator from L2(
) to L2(
), holomorphic on fIm� < 0g extends mero-
morphically to ~C with poles in fIm� > 0g (resonances).
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Theorem 2 Suppose that �0 = fx 2 @
; a(x) > 0g satis�es the E.G.C., then there exist
positive constants �; � such that R�(�) has no poles in the region

��;� = f� 2 C = Im� � �; jRe�j � �g :

Furthermore, there exists c > 0 such that for any f 2 L2R(
) := fg 2 L2(
)=Supp(g) �
B(0; R)g and � 2 ��;�

krR(�)fkL2(
R) + k�R(�)fkL2(
R) � c kfkL2(
) : (10)

Corollary 1 Under the hypotheses of Theorem 1, there exist �; c > 0 such that for all
solution of (8) with initial data in Hr; we have

ER(t) � ce��tE(0); 8 t > 1 in odd space dimension, (11)
ER(t) �

c

t2d
E(0); 8 t > 1 in even space dimension.

1 L. Aloui end M. Khenissi, Boundary stabilization of the wave and Schrödinger equations in exterior domains, DCDS-A, Volume 27,
Number 3, July 2010
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� So the high-frequency behavior ( i.e. the large pole-free regions near the real axis)
decides whether there is uniform local energy decay or not.

� The explicit rate is calculated from the low-frequency asymptotic.
�We show that it has a meromorphic extension to ~C. Then we prove, for low fre-
quencies, that R(�) has the same behavior as that of the free resolvent R0(�) near
� = 0.

�We prove Theorem 1. We argue by contradiction we obtain two sequences �n !1
and (un) satisfying

krunk2L2(
R) + k�nunk
2
L2(
R)

= 1; k�naunkL2(�) ! 0: (12)

Multiplying un by e�i�nt, we obtain a sequence (vn) solutions of a damped wave equa-
tion such that

vn ! 0 in H1
loc(R+ � �0) and @�vn ! 0 in L2loc(R+ � �0): (13)

Using the Lifting Lemma and the propagation of the microlocal defect measures in
the positive sense of time we can propagate the strong convergence (13) to the
region ]TR;+1[�
R. Translating this result to (un) we get a contradiction.
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4 Stabilization of Schrödinger equation
8<: i@tu��u = 0 in ]0;+1[�
;
@�u + ia(x)u = 0 on ]0;+1[�@
;
u(0; :) = f in 
;

(14)

where a is as above and f 2 L2(
):
� 
 = Rd : Local energy

ER(u)(t) := ku(t; :)kL2(BR) �
c

td=2
kfkL2 ; t > 0

� 
 non-trapping domain
� Vainberg (73): ER(t)& 1

t if d is even and&
1
t3=2
if d is odd.

� K. Tsutsumi (84): ER(t)& 1
td=2
:

(��2 ��)�1 =) (�i� ��)�1
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� In the trapping case
� Ralston gives an example with a sequence of poles of (�2+�)�1 converging expo-
nentially to the real axis.

In order to solve this situation and to make the decay of the local energy uniform,
the authors Al-Kh2 have been interested to the dissipative Schrödinger equation with
an internal damping term. Under the E.G.C, they proved an estimate on the cut-off
resolvent �(�i� � � + ia)�1� and they thus deduced the uniform decay of the local
energy.
� ~R(� ) the outgoing resolvent associated to the problem (14)

~R(� )f = i

Z +1

0

e�tu(t)dt; Re � < 0; (15)

with u(t) solution of (14). It is clear that the relation (15) de�nes a family of bounded
operators from L2(
) to L2(
), holomorphic on fRe � < 0g.

2 Aloui (L.) and Khenissi (M.)- Stabilization of Schrödinger equation in exterior domains, Control, Optimisation and Calculus of
Variations, ESAIM : COCV. 13 No 3 (2007), 570-579.
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Theorem 3 Suppose that �0 satis�es the E.G.C., then there exist positive constants
�; � such that ~R�(� ) has no pole in the region

��;� = f� 2 C = Re � � �; jIm � j � �g :

Furthermore, for two positive constants r and r0 with r0; r > R there exists c > 0 such
that for any g 2 L2r(
) and � 2 ��;�

 ~R�(� )g

L2(
r0) � c kgkL2(
) : (16)

Corollary 2 Under the hypotheses of the Theorem 2, for two positive constants r0; r >
R there exists c > 0 such that for all solution u of (14) with initial data f in L2r(
) we
have

ku(t; :)kL2(
r0) �
c

td=2
kfkL2(
) ;8 t > 1:

We present a simple method allowing us to see the resolvent of the Schrödinger equa-
tion as a perturbation of that of the wave equation.
2 L. Aloui end M. Khenissi, Boundary stabilization of the wave and Schrödinger equations in exterior domains, DCDS-A, Volume 27,
Number 3, July 2010
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5 Smoothing effect
It is well known that the Schrödinger equation enjoys some smoothing properties.
One of them says that if u0 2 L2(Rd) with compact support, then the solution of the
Schrödinger equation �

i@tu��u = 0 in R� Rd
u(0; :) = u0 in Rd; (17)

satis�es

u 2 C1(R n f0g � Rd):

We say that the Schrödinger propagator has an in�nite speed. Another type of gain of
regularity for system (17) is the Kato-1=2 smoothing effect, namely any solution of (17)
satis�es Z

R

Z
jxj<R

j(1��)14u(t; x)j2dxdt � CR ku0k2L2(Rd) : (18)

In particular, this result implies that for a.e. t 2 R, u(t; :) is locally smoother than u0 and
this happens despite the fact that (17) conserves the global L2 norm.
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The Kato-effect has been extended to
� Variable coef�cients operators with non trapping metric by Doi(96)
� Non trapping exterior domains by Burq, Gerard and Tzvetkov (04).
� On the other hand, Burq (04) proved that the nontrapping assumption is necessary
for the H1=2 smoothing effect.

Recently, we have introduced the forced smoothing effect for Schrödinger equation.
The idea is inspired from the stabilization problem and it consists of acting on the
equation in order to produce some smoothing effects. More precisely, the following
regularized Schrödinger equation on a bounded domain 
 � Rd is considered:8<: i@tu��u + ia(x)(��)

1
2a(x)u = 0 in R� 
;

u(0; :) = f in 
;
ujR�@
 = 0;

(19)

Under the geometric control condition (G.C.C.) on the set w = fa 6= 0g, it is proved by
Aloui3, that any solution with initial data in L2(
) belongs to L2loc((0;1); H1(
)). Then
by iteration of the last result, a C1-smoothing effect is proved.

3 ALOUI (L.)- Smoothing effect for regularized Schrödinger equation on bounded domains, Asymptotic Analysis 59- 2008

Queen Dido Conference, May 24-29, 2010 - Carthage, Tunisia



On the Resolvent Estimates of some Evolution Equations and Applications 20

Note that these smoothing effects hold away from t = 0 and they seem strong com-
pared with the Kato effect for which the GCC is necessary. Therefore the case when
w = fa 6= 0g does not control geometrically 
 is very interesting.

In this work we give an example of geometry where the geometric control condition is
not satis�ed but the C1 smoothing effect holds.
Let O = [Ni=1Oi � Rd be the union of a �nite number of bounded strictly convex bodies,
Oi, satisfying the conditions of Ikawa.
Let B be a bounded domain containing O with smooth boundary such that

0 = O

c \B is connected, where Oc = Rd nO.
In the present work, we will consider the regularized Schrödinger equation (19) in 
0.
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Our main result is the following

Theorem 2 Assume a 2 C1(
0) is constant near the boundary of B. Then there exist
positive constants �0 and c such that for any j Im � j < �0 and f 2 L2(
0)


(��D � � + ia(x)(��D)12a(x))�1f




L2(
0)
� C log

2h�i
h�i12

kfkL2(
0) ; (20)

where h�i =
p
1 + j� j2.

Note also that a better bound (with log instead of log2) was obtained by Christainson
(07-10) in the case of the damped wave equation on compact manifolds without bound-
ary under the assumption that there is only one closed hyperbolic orbit which does not
pass through the support of the dissipative term. This has been recently improved by
Schenck(09) for a class of compact manifolds with negative curvature, where a strip
free of eigenvalues has been obtained under a pressure condition.

3 L. Aloui, G. Vodev and M. Khenissi, Smoothing effect for the regularized Schrödinger equation with non controlled orbits, submited
to publication in J.Diff. Eq.
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As an application of this resolvent estimate we obtain the following smoothing result for
the associated Schrödinger propagator.

Theorem 3 Let s 2 R. Under the hypothesis of Theorem 2, we have

(i) For each " > 0 there is a constantC > 0 such that u, de�ned by u(t) =
Z t

0

ei(t��)Aaf (� )d�

satis�es

kukL2THs+1�"(
0)
� C kfkL2THs(
0)

(21)

for all T > 0 and f 2 L2THs(
0).
(ii) If v0 2 Hs(
0) then

v 2 C1((0;+1)� 
0) (22)

where v is the solution of (19) with initial data v0.
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Theorem 2 also implies the following stabilization result.

Theorem 4 Under the hypotheses of Theorem 2, there exist �; c > 0 such that for all
solution u of (19) with initial data u0 in L2(
0), we have

kukL2(
0) � ce��tku0kL2(
0); 8 t > 1:

This result shows that we can stabilize the Schrödinger equation by a (strongly) dissi-
pative term that does not satisfy the geometric control condition of B. L. R. In fact, to
have the exponential decay above it suf�ces to have the estimate (20) with a constant
in the right-hand side.
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Thank you !!
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